:: Cartesian Products of Family of Real Linear Spaces
:: by Hiroyuki Okazaki , Noboru Endou and Yasunari Shidama
::
:: Received August 17, 2010
:: Copyright (c) 2010-2018 Association of Mizar Users
:: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland).
:: This code can be distributed under the GNU General Public Licence
:: version 3.0 or later, or the Creative Commons Attribution-ShareAlike
:: License version 3.0 or later, subject to the binding interpretation
:: detailed in file COPYING.interpretation.
:: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these
:: licenses, or see http://www.gnu.org/licenses/gpl.html and
:: http://creativecommons.org/licenses/by-sa/3.0/.
environ
vocabularies NUMBERS, SUBSET_1, CARD_3, FUNCT_1, RELAT_1, FUNCT_2, FINSEQ_1,
PRE_TOPC, XBOOLE_0, NORMSP_0, STRUCT_0, RLVECT_1, NORMSP_1, COMPLEX1,
ARYTM_3, REAL_1, PRVECT_3, RFINSEQ, ARYTM_1, SQUARE_1, RVSUM_1, XXREAL_0,
CARD_1, SUPINF_2, SEQ_2, ORDINAL2, TARSKI, NAT_1, PRVECT_1, PRVECT_2,
ZFMISC_1, ORDINAL4, GROUP_2, ALGSTR_0, BINOP_1, EUCLID, REWRITE1,
RSSPACE3, RELAT_2, METRIC_1;
notations TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, RELAT_1, FUNCT_1, ORDINAL1,
RELSET_1, PARTFUN1, FUNCT_2, BINOP_1, DOMAIN_1, NUMBERS, XCMPLX_0,
XXREAL_0, XREAL_0, REAL_1, SQUARE_1, NAT_1, COMPLEX1, CARD_3, FINSEQ_1,
FINSEQ_2, FINSEQ_4, RVSUM_1, RFINSEQ, STRUCT_0, ALGSTR_0, PRE_TOPC,
RLVECT_1, NORMSP_0, NORMSP_1, EUCLID, RSSPACE3, LOPBAN_1, PRVECT_1,
PRVECT_2;
constructors REAL_1, SQUARE_1, RSSPACE3, COMPLEX1, LOPBAN_1, RVSUM_1, BINOP_2,
PRVECT_2, FINSEQ_4, RFINSEQ, FINSEQOP, TOPMETR;
registrations RELSET_1, STRUCT_0, ORDINAL1, XREAL_0, FUNCT_1, FUNCT_2,
NUMBERS, XBOOLE_0, VALUED_0, EUCLID, PRVECT_2, ALGSTR_0, FINSEQ_1,
CARD_3, NORMSP_0, LOPBAN_1, RLVECT_1, NORMSP_1, RELAT_1, SUBSET_1,
SQUARE_1, RVSUM_1;
requirements SUBSET, BOOLE, NUMERALS, ARITHM;
begin :: Preliminaries
reserve G,F for RealLinearSpace;
theorem :: PRVECT_3:1
for D,E,F,G be non empty set
ex I be Function of [: [:D,E:],[:F,G:] :], [:[:D,F:],[:E,G:]:]
st I is one-to-one & I is onto
& for d,e,f,g be set st d in D & e in E & f in F & g in G
holds I.([d,e],[f,g]) = [[d,f],[e,g]];
theorem :: PRVECT_3:2
for X be non empty set, D be Function st dom D = {1} & D.1 = X
ex I be Function of X,product D
st I is one-to-one & I is onto
& for x be object st x in X holds I.x = <*x*>;
theorem :: PRVECT_3:3
for X,Y be non empty set, D be Function
st dom D = {1,2} & D.1 = X & D.2 = Y
ex I be Function of [:X,Y:],product D
st I is one-to-one & I is onto
& for x,y be object st x in X & y in Y holds I.(x,y) = <*x,y*>;
theorem :: PRVECT_3:4
for X be non empty set
ex I be Function of X,product <*X*>
st I is one-to-one & I is onto
& for x be object st x in X holds I.x = <*x*>;
registration
let X,Y be non-empty non empty FinSequence;
cluster X^Y -> non-empty;
end;
theorem :: PRVECT_3:5
for X,Y be non empty set
ex I be Function of [:X,Y:],product <*X,Y*>
st I is one-to-one & I is onto
& for x,y be object st x in X & y in Y holds I.(x,y) = <*x,y*>;
theorem :: PRVECT_3:6
for X,Y be non-empty non empty FinSequence
ex I be Function of [: product X,product Y :],product(X^Y)
st I is one-to-one & I is onto
& for x,y be FinSequence st x in product X & y in product Y
holds I.(x,y) = x^y;
definition
let G,F be non empty addLoopStr;
func prod_ADD(G,F) -> BinOp of [:the carrier of G,the carrier of F:] means
:: PRVECT_3:def 1
for g1,g2 be Point of G, f1,f2 be Point of F
holds it.([g1,f1],[g2,f2]) = [g1+g2,f1+f2];
end;
definition let G,F be non empty RLSStruct;
func prod_MLT(G,F) -> Function of
[:REAL, [:the carrier of G,the carrier of F:] :],
[:the carrier of G,the carrier of F:] means
:: PRVECT_3:def 2
for r be Real, g be Point of G, f be Point of F
holds it.(r,[g,f]) = [r*g,r*f];
end;
definition let G,F be non empty addLoopStr;
func prod_ZERO(G,F) -> Element of [:the carrier of G,the carrier of F:]
equals
:: PRVECT_3:def 3
[0.G,0.F];
end;
definition let G,F be non empty addLoopStr;
func [:G,F:] -> strict non empty addLoopStr equals
:: PRVECT_3:def 4
addLoopStr (# [:the carrier of G,the carrier of F:],
prod_ADD(G,F), prod_ZERO(G,F) #);
end;
registration
let G,F be Abelian non empty addLoopStr;
cluster [:G,F:] -> Abelian;
end;
registration
let G,F be add-associative non empty addLoopStr;
cluster [:G,F:] -> add-associative;
end;
registration
let G,F be right_zeroed non empty addLoopStr;
cluster [:G,F:] -> right_zeroed;
end;
registration
let G,F be right_complementable non empty addLoopStr;
cluster [:G,F:] -> right_complementable;
end;
theorem :: PRVECT_3:7
for G,F be non empty addLoopStr holds
( for x be set holds
(x is Point of [:G,F:]
iff ex x1 be Point of G, x2 be Point of F st x=[x1,x2]) )
& ( for x,y be Point of [:G,F:],
x1,y1 be Point of G ,x2,y2 be Point of F
st x=[x1,x2] & y=[y1,y2] holds x+y = [x1+y1,x2+y2] )
& 0.[:G,F:] = [0.G,0.F];
theorem :: PRVECT_3:8
for G,F be add-associative right_zeroed
right_complementable non empty addLoopStr,
x be Point of [:G,F:], x1 be Point of G, x2 be Point of F
st x=[x1,x2] holds -x = [-x1,-x2];
registration
let G,F be Abelian add-associative
right_zeroed right_complementable strict non empty addLoopStr;
cluster [:G,F:] -> strict Abelian add-associative
right_zeroed right_complementable;
end;
definition let G,F be non empty RLSStruct;
func [:G,F:] -> strict non empty RLSStruct equals
:: PRVECT_3:def 5
RLSStruct (# [:the carrier of G,the carrier of F:],
prod_ZERO(G,F), prod_ADD(G,F), prod_MLT(G,F) #);
end;
registration
let G,F be Abelian non empty RLSStruct;
cluster [:G,F:] -> Abelian;
end;
registration
let G,F be add-associative non empty RLSStruct;
cluster [:G,F:] -> add-associative;
end;
registration
let G,F be right_zeroed non empty RLSStruct;
cluster [:G,F:] -> right_zeroed;
end;
registration
let G,F be right_complementable non empty RLSStruct;
cluster [:G,F:] -> right_complementable;
end;
theorem :: PRVECT_3:9
for G,F be non empty RLSStruct holds
( for x be set holds
(x is Point of [:G,F:]
iff ex x1 be Point of G, x2 be Point of F st x=[x1,x2]) )
& ( for x,y be Point of [:G,F:], x1,y1 be Point of G, x2,y2 be Point of F
st x=[x1,x2] & y=[y1,y2] holds x+y = [x1+y1,x2+y2] )
& 0.[:G,F:] = [0.G,0.F]
& ( for x be Point of [:G,F:], x1 be Point of G, x2 be Point of F,
a be Real
st x=[x1,x2] holds a*x = [a*x1,a*x2] );
theorem :: PRVECT_3:10
for G,F be add-associative right_zeroed
right_complementable non empty RLSStruct,
x be Point of [:G,F:], x1 be Point of G, x2 be Point of F
st x=[x1,x2] holds -x = [-x1,-x2];
registration
let G,F be vector-distributive non empty RLSStruct;
cluster [:G,F:] -> vector-distributive;
end;
registration
let G,F be scalar-distributive non empty RLSStruct;
cluster [:G,F:] -> scalar-distributive;
end;
registration
let G,F be scalar-associative non empty RLSStruct;
cluster [:G,F:] -> scalar-associative;
end;
registration
let G,F be scalar-unital non empty RLSStruct;
cluster [:G,F:] -> scalar-unital;
end;
registration
let G be Abelian add-associative right_zeroed right_complementable
scalar-distributive vector-distributive scalar-associative
scalar-unital non empty RLSStruct;
cluster <* G *> -> RealLinearSpace-yielding;
end;
registration
let G,F be Abelian add-associative right_zeroed right_complementable
scalar-distributive vector-distributive scalar-associative
scalar-unital non empty RLSStruct;
cluster <* G,F *> -> RealLinearSpace-yielding;
end;
begin :: Cartesian Product of Real Linear Spaces
theorem :: PRVECT_3:11
for X be RealLinearSpace holds
ex I be Function of X, product <*X*>
st I is one-to-one & I is onto
& ( for x be Point of X holds I.x = <*x*> )
& ( for v,w be Point of X holds I.(v+w) = I.v + I.w )
& ( for v be Point of X, r be Element of REAL
holds I.(r*v)=r*(I.v) )
& I.(0.X)=0.product <*X*>;
registration
let G,F be non empty RealLinearSpace-yielding FinSequence;
cluster G^F -> RealLinearSpace-yielding;
end;
theorem :: PRVECT_3:12
for X,Y be RealLinearSpace holds
ex I be Function of [:X,Y:],product <*X,Y*>
st I is one-to-one & I is onto
& ( for x be Point of X, y be Point of Y holds I.(x,y) = <*x,y*> )
& ( for v,w be Point of [:X,Y:] holds I.(v+w)=(I.v) + (I.w) )
& ( for v be Point of [:X,Y:], r be Real
holds I.(r*v)=r*(I.v) )
& I.(0.[:X,Y:])=0.product <*X,Y*>;
theorem :: PRVECT_3:13
for X,Y be non empty RealLinearSpace-Sequence
holds ex I be Function of [:product X,product Y:],product (X^Y)
st I is one-to-one & I is onto
& ( for x be Point of product X, y be Point of product Y
holds ex x1,y1 be FinSequence st x=x1 & y=y1 & I.(x,y) = x1^y1 )
& ( for v,w be Point of [:product X,product Y:]
holds I.(v+w) = I.v + I.w )
& ( for v be Point of [:product X,product Y:], r be Element of REAL
holds I.(r*v)=r*(I.v) )
& I.(0.[:product X,product Y:]) = 0.product (X^Y);
theorem :: PRVECT_3:14
for G,F be RealLinearSpace holds
( for x be set holds
( x is Point of product <*G,F*>
iff ex x1 be Point of G, x2 be Point of F st x=<* x1,x2 *> ) )
& ( for x,y be Point of product <*G,F*>,
x1,y1 be Point of G ,x2,y2 be Point of F
st x = <*x1,x2*> & y = <*y1,y2*>
holds x+y = <*x1+y1,x2+y2*> )
& 0.(product <*G,F*>) = <* 0.G,0.F *>
& ( for x be Point of product <*G,F*>, x1 be Point of G, x2 be Point of F
st x=<* x1,x2 *> holds -x = <* -x1,-x2 *> )
& ( for x be Point of product <*G,F*>, x1 be Point of G, x2 be Point of F,
a be Real
st x = <*x1,x2*> holds a*x = <* a*x1,a*x2 *> );
begin :: Cartesian Product of Real Normed Linear Spaces
definition let G,F be non empty NORMSTR;
func prod_NORM(G,F) -> Function of
[:the carrier of G,the carrier of F:], REAL means
:: PRVECT_3:def 6
for g be Point of G, f be Point of F
holds ex v be Element of REAL 2
st v= <* ||.g.||,||.f.|| *> & it.(g,f) = |.v.|;
end;
definition let G,F be non empty NORMSTR;
func [:G,F:] -> strict non empty NORMSTR equals
:: PRVECT_3:def 7
NORMSTR (# [:the carrier of G,the carrier of F:],
prod_ZERO(G,F), prod_ADD(G,F), prod_MLT(G,F), prod_NORM(G,F) #);
end;
registration
let G,F be RealNormSpace;
cluster [:G,F:] -> reflexive discerning RealNormSpace-like;
end;
registration
let G,F be reflexive discerning RealNormSpace-like
scalar-distributive vector-distributive scalar-associative
scalar-unital Abelian add-associative
right_zeroed right_complementable non empty NORMSTR;
cluster [:G,F:] -> strict reflexive discerning RealNormSpace-like
scalar-distributive vector-distributive scalar-associative
scalar-unital Abelian add-associative right_zeroed right_complementable;
end;
registration
let G be reflexive discerning RealNormSpace-like scalar-distributive
vector-distributive scalar-associative scalar-unital Abelian
add-associative right_zeroed right_complementable non empty NORMSTR;
cluster <*G*> -> RealNormSpace-yielding;
end;
registration
let G,F be reflexive discerning RealNormSpace-like scalar-distributive
vector-distributive scalar-associative scalar-unital Abelian
add-associative right_zeroed right_complementable non empty NORMSTR;
cluster <*G,F*> -> RealNormSpace-yielding;
end;
theorem :: PRVECT_3:15
for X,Y be RealNormSpace
holds ex I be Function of [:X,Y:],product <*X,Y*>
st I is one-to-one & I is onto
& ( for x be Point of X, y be Point of Y holds I.(x,y) = <*x,y*> )
& ( for v,w be Point of [:X,Y:] holds I.(v+w) = I.v + I.w )
& ( for v be Point of [:X,Y:], r be Real
holds I.(r*v)=r*(I.v) )
& 0. product <*X,Y*> = I.(0.[:X,Y:])
& ( for v be Point of [:X,Y:] holds ||. I.v .|| = ||.v.|| );
theorem :: PRVECT_3:16
for X be RealNormSpace
holds ex I be Function of X ,product <*X*>
st I is one-to-one & I is onto
& ( for x be Point of X holds I.x = <*x*> )
& ( for v,w be Point of X holds I.(v+w) = I.v + I.w )
& ( for v be Point of X, r be Element of REAL holds I.(r*v)=r*(I.v) )
& 0. product <*X*> = I.(0.X)
& ( for v be Point of X holds ||. I.v .|| = ||.v.|| );
registration
let G,F be non empty RealNormSpace-yielding FinSequence;
cluster G^F -> non empty RealNormSpace-yielding;
end;
theorem :: PRVECT_3:17
for X,Y be non empty RealNormSpace-Sequence
holds ex I be Function of [:product X,product Y:],product (X^Y)
st I is one-to-one & I is onto
& ( for x be Point of product X, y be Point of product Y
holds ex x1,y1 be FinSequence st x=x1 & y=y1 & I.(x,y) = x1^y1 )
& ( for v,w be Point of [:product X,product Y:] holds I.(v+w) = I.v + I.w )
& ( for v be Point of [:product X,product Y:], r be Element of REAL
holds I.(r*v)=r*(I.v) )
& I.(0.[:product X,product Y:]) = 0.product (X^Y)
& ( for v be Point of [:product X,product Y:] holds ||. I.v .|| = ||.v.|| );
theorem :: PRVECT_3:18
for G,F be RealNormSpace holds
( for x be set holds
( x is Point of [:G,F:]
iff ex x1 be Point of G ,x2 be Point of F st x=[x1,x2]) )
& ( for x,y be Point of [:G,F:], x1,y1 be Point of G, x2,y2 be Point of F
st x=[x1,x2] & y=[y1,y2] holds x+y = [x1+y1,x2+y2] )
& 0.[:G,F:] = [0.G,0.F]
& ( for x be Point of [:G,F:], x1 be Point of G, x2 be Point of F
st x=[x1,x2] holds -x = [-x1,-x2] )
& ( for x be Point of [:G,F:], x1 be Point of G, x2 be Point of F,
a be Real
st x=[x1,x2] holds a*x = [a*x1,a*x2] )
& ( for x be Point of [:G,F:], x1 be Point of G, x2 be Point of F
st x=[x1,x2] holds
ex w be Element of REAL 2 st
w=<* ||.x1.||,||.x2.|| *> & ||.x.|| = |.w.| );
theorem :: PRVECT_3:19
for G,F be RealNormSpace holds
( for x be set holds
( x is Point of product <*G,F*>
iff ex x1 be Point of G, x2 be Point of F st x=<* x1,x2 *> ) )
& ( for x,y be Point of product <*G,F*>,
x1,y1 be Point of G, x2,y2 be Point of F
st x=<*x1,x2*> & y=<*y1,y2*> holds x+y = <* x1+y1,x2+y2 *> )
& 0.(product <*G,F*>) = <* 0.G,0.F *>
& ( for x be Point of product <*G,F*>, x1 be Point of G, x2 be Point of F
st x=<*x1,x2*> holds -x = <* -x1,-x2 *> )
& ( for x be Point of product <*G,F*>,
x1 be Point of G, x2 be Point of F, a be Real
st x=<*x1,x2*> holds a*x = <* a*x1,a*x2 *> )
& ( for x be Point of product <*G,F*>, x1 be Point of G, x2 be Point of F
st x=<*x1,x2*> holds
ex w be Element of REAL 2 st
w=<* ||.x1.||,||.x2.|| *> & ||.x.|| = |.w.| );
registration
let X,Y be complete RealNormSpace;
cluster [:X,Y:] -> complete;
end;
theorem :: PRVECT_3:20
for X,Y be non empty RealNormSpace-Sequence
holds ex I be Function of product <* product X,product Y *>,product (X^Y)
st I is one-to-one & I is onto
& ( for x be Point of product X, y be Point of product Y
holds ex x1,y1 be FinSequence
st x=x1 & y=y1 & I.<*x,y*> = x1^y1 )
& ( for v,w be Point of product <* product X,product Y *>
holds I.(v+w) = I.v + I.w )
& ( for v be Point of product <* product X,product Y *>,
r be Element of REAL
holds I.(r*v)=r*(I.v) )
& I.(0.(product <* product X,product Y *>)) = 0.product (X^Y)
& ( for v be Point of product <* product X,product Y *>
holds ||. I.v .|| = ||.v.|| );
theorem :: PRVECT_3:21
for X,Y be non empty RealLinearSpace
holds ex I be Function of [:X,Y:],[:X,product <*Y*>:]
st I is one-to-one & I is onto
& ( for x be Point of X, y be Point of Y holds I.(x,y) = [x,<*y*>] )
& ( for v,w be Point of [:X,Y:] holds I.(v+w) = I.v + I.w )
& ( for v be Point of [:X,Y:], r be Element of REAL
holds I.(r*v)=r*(I.v) )
& I.(0.[:X,Y:]) = 0.([:X,product<*Y*>:]);
theorem :: PRVECT_3:22
for X be non empty RealLinearSpace-Sequence, Y be RealLinearSpace
holds ex I be Function of [:product X,Y:],product(X^<*Y*>)
st I is one-to-one & I is onto
& ( for x be Point of product X, y be Point of Y
ex x1,y1 be FinSequence st x=x1 & <*y*> =y1 & I.(x,y) = x1^y1 )
& ( for v,w be Point of [:product X,Y:] holds I.(v+w) = I.v + I.w )
& ( for v be Point of [:product X,Y:], r be Element of REAL
holds I.(r*v)=r*(I.v) )
& I.(0.[:product X,Y:]) = 0.product (X^<*Y*>);
theorem :: PRVECT_3:23
for X ,Y be non empty RealNormSpace
ex I be Function of [:X,Y:],[:X,product<*Y*>:]
st I is one-to-one & I is onto
& ( for x be Point of X, y be Point of Y holds I.(x,y) = [x,<*y*>] )
& ( for v,w be Point of [:X,Y:] holds I.(v+w) = I.v + I.w )
& ( for v be Point of [:X,Y:], r be Element of REAL holds I.(r*v)=r*(I.v) )
& I.(0.[:X,Y:]) = 0.([:X,product <*Y*>:])
& ( for v be Point of [:X,Y:] holds ||. I.v .|| = ||.v.|| );
theorem :: PRVECT_3:24
for X be non empty RealNormSpace-Sequence, Y be RealNormSpace
ex I be Function of [:product X,Y:],product(X^<*Y*>)
st I is one-to-one & I is onto
& ( for x be Point of product X, y be Point of Y
ex x1,y1 be FinSequence st x=x1 & <*y*>=y1 & I.(x,y) = x1^y1 )
& ( for v,w be Point of [:product X,Y:] holds I.(v+w) = I.v + I.w )
& ( for v be Point of [:product X,Y:], r be Element of REAL
holds I.(r*v)=r*(I.v) )
& I.(0.[:product X,Y:]) = 0.product(X^<*Y*>)
& ( for v be Point of [:product X,Y:] holds ||. I.v .|| = ||.v.|| );