:: by Noboru Endou

::

:: Received February 24, 2004

:: Copyright (c) 2004-2019 Association of Mizar Users

definition

let X be set ;

let Y be non empty set ;

let F be Function of [:COMPLEX,Y:],Y;

let c be Complex;

let f be Function of X,Y;

:: original: [;]

redefine func F [;] (c,f) -> Element of Funcs (X,Y);

coherence

F [;] (c,f) is Element of Funcs (X,Y)

end;
let Y be non empty set ;

let F be Function of [:COMPLEX,Y:],Y;

let c be Complex;

let f be Function of X,Y;

:: original: [;]

redefine func F [;] (c,f) -> Element of Funcs (X,Y);

coherence

F [;] (c,f) is Element of Funcs (X,Y)

proof end;

definition

let X be non empty set ;

let Y be ComplexLinearSpace;

ex b_{1} being Function of [:COMPLEX,(Funcs (X, the carrier of Y)):],(Funcs (X, the carrier of Y)) st

for c being Complex

for f being Element of Funcs (X, the carrier of Y)

for x being Element of X holds (b_{1} . [c,f]) . x = c * (f . x)

for b_{1}, b_{2} being Function of [:COMPLEX,(Funcs (X, the carrier of Y)):],(Funcs (X, the carrier of Y)) st ( for c being Complex

for f being Element of Funcs (X, the carrier of Y)

for x being Element of X holds (b_{1} . [c,f]) . x = c * (f . x) ) & ( for c being Complex

for f being Element of Funcs (X, the carrier of Y)

for x being Element of X holds (b_{2} . [c,f]) . x = c * (f . x) ) holds

b_{1} = b_{2}

end;
let Y be ComplexLinearSpace;

func FuncExtMult (X,Y) -> Function of [:COMPLEX,(Funcs (X, the carrier of Y)):],(Funcs (X, the carrier of Y)) means :Def1: :: CLOPBAN1:def 1

for c being Complex

for f being Element of Funcs (X, the carrier of Y)

for x being Element of X holds (it . [c,f]) . x = c * (f . x);

existence for c being Complex

for f being Element of Funcs (X, the carrier of Y)

for x being Element of X holds (it . [c,f]) . x = c * (f . x);

ex b

for c being Complex

for f being Element of Funcs (X, the carrier of Y)

for x being Element of X holds (b

proof end;

uniqueness for b

for f being Element of Funcs (X, the carrier of Y)

for x being Element of X holds (b

for f being Element of Funcs (X, the carrier of Y)

for x being Element of X holds (b

b

proof end;

:: deftheorem Def1 defines FuncExtMult CLOPBAN1:def 1 :

for X being non empty set

for Y being ComplexLinearSpace

for b_{3} being Function of [:COMPLEX,(Funcs (X, the carrier of Y)):],(Funcs (X, the carrier of Y)) holds

( b_{3} = FuncExtMult (X,Y) iff for c being Complex

for f being Element of Funcs (X, the carrier of Y)

for x being Element of X holds (b_{3} . [c,f]) . x = c * (f . x) );

for X being non empty set

for Y being ComplexLinearSpace

for b

( b

for f being Element of Funcs (X, the carrier of Y)

for x being Element of X holds (b

theorem Th1: :: CLOPBAN1:1

for X being non empty set

for Y being ComplexLinearSpace

for x being Element of X holds (FuncZero (X,Y)) . x = 0. Y

for Y being ComplexLinearSpace

for x being Element of X holds (FuncZero (X,Y)) . x = 0. Y

proof end;

theorem Th2: :: CLOPBAN1:2

for X being non empty set

for Y being ComplexLinearSpace

for f, h being Element of Funcs (X, the carrier of Y)

for a being Complex holds

( h = (FuncExtMult (X,Y)) . [a,f] iff for x being Element of X holds h . x = a * (f . x) )

for Y being ComplexLinearSpace

for f, h being Element of Funcs (X, the carrier of Y)

for a being Complex holds

( h = (FuncExtMult (X,Y)) . [a,f] iff for x being Element of X holds h . x = a * (f . x) )

proof end;

theorem Th3: :: CLOPBAN1:3

for X being non empty set

for Y being ComplexLinearSpace

for f, g being Element of Funcs (X, the carrier of Y) holds (FuncAdd (X,Y)) . (f,g) = (FuncAdd (X,Y)) . (g,f)

for Y being ComplexLinearSpace

for f, g being Element of Funcs (X, the carrier of Y) holds (FuncAdd (X,Y)) . (f,g) = (FuncAdd (X,Y)) . (g,f)

proof end;

theorem Th4: :: CLOPBAN1:4

for X being non empty set

for Y being ComplexLinearSpace

for f, g, h being Element of Funcs (X, the carrier of Y) holds (FuncAdd (X,Y)) . (f,((FuncAdd (X,Y)) . (g,h))) = (FuncAdd (X,Y)) . (((FuncAdd (X,Y)) . (f,g)),h)

for Y being ComplexLinearSpace

for f, g, h being Element of Funcs (X, the carrier of Y) holds (FuncAdd (X,Y)) . (f,((FuncAdd (X,Y)) . (g,h))) = (FuncAdd (X,Y)) . (((FuncAdd (X,Y)) . (f,g)),h)

proof end;

theorem Th5: :: CLOPBAN1:5

for X being non empty set

for Y being ComplexLinearSpace

for f being Element of Funcs (X, the carrier of Y) holds (FuncAdd (X,Y)) . ((FuncZero (X,Y)),f) = f

for Y being ComplexLinearSpace

for f being Element of Funcs (X, the carrier of Y) holds (FuncAdd (X,Y)) . ((FuncZero (X,Y)),f) = f

proof end;

theorem Th6: :: CLOPBAN1:6

for X being non empty set

for Y being ComplexLinearSpace

for f being Element of Funcs (X, the carrier of Y) holds (FuncAdd (X,Y)) . (f,((FuncExtMult (X,Y)) . [(- 1r),f])) = FuncZero (X,Y)

for Y being ComplexLinearSpace

for f being Element of Funcs (X, the carrier of Y) holds (FuncAdd (X,Y)) . (f,((FuncExtMult (X,Y)) . [(- 1r),f])) = FuncZero (X,Y)

proof end;

theorem Th7: :: CLOPBAN1:7

for X being non empty set

for Y being ComplexLinearSpace

for f being Element of Funcs (X, the carrier of Y) holds (FuncExtMult (X,Y)) . [1r,f] = f

for Y being ComplexLinearSpace

for f being Element of Funcs (X, the carrier of Y) holds (FuncExtMult (X,Y)) . [1r,f] = f

proof end;

theorem Th8: :: CLOPBAN1:8

for X being non empty set

for Y being ComplexLinearSpace

for f being Element of Funcs (X, the carrier of Y)

for a, b being Complex holds (FuncExtMult (X,Y)) . [a,((FuncExtMult (X,Y)) . [b,f])] = (FuncExtMult (X,Y)) . [(a * b),f]

for Y being ComplexLinearSpace

for f being Element of Funcs (X, the carrier of Y)

for a, b being Complex holds (FuncExtMult (X,Y)) . [a,((FuncExtMult (X,Y)) . [b,f])] = (FuncExtMult (X,Y)) . [(a * b),f]

proof end;

theorem Th9: :: CLOPBAN1:9

for X being non empty set

for Y being ComplexLinearSpace

for f being Element of Funcs (X, the carrier of Y)

for a, b being Complex holds (FuncAdd (X,Y)) . (((FuncExtMult (X,Y)) . [a,f]),((FuncExtMult (X,Y)) . [b,f])) = (FuncExtMult (X,Y)) . [(a + b),f]

for Y being ComplexLinearSpace

for f being Element of Funcs (X, the carrier of Y)

for a, b being Complex holds (FuncAdd (X,Y)) . (((FuncExtMult (X,Y)) . [a,f]),((FuncExtMult (X,Y)) . [b,f])) = (FuncExtMult (X,Y)) . [(a + b),f]

proof end;

Lm1: for X being non empty set

for Y being ComplexLinearSpace

for f, g being Element of Funcs (X, the carrier of Y)

for a being Complex holds (FuncAdd (X,Y)) . (((FuncExtMult (X,Y)) . [a,f]),((FuncExtMult (X,Y)) . [a,g])) = (FuncExtMult (X,Y)) . [a,((FuncAdd (X,Y)) . (f,g))]

proof end;

theorem Th10: :: CLOPBAN1:10

for X being non empty set

for Y being ComplexLinearSpace holds CLSStruct(# (Funcs (X, the carrier of Y)),(FuncZero (X,Y)),(FuncAdd (X,Y)),(FuncExtMult (X,Y)) #) is ComplexLinearSpace

for Y being ComplexLinearSpace holds CLSStruct(# (Funcs (X, the carrier of Y)),(FuncZero (X,Y)),(FuncAdd (X,Y)),(FuncExtMult (X,Y)) #) is ComplexLinearSpace

proof end;

definition

let X be non empty set ;

let Y be ComplexLinearSpace;

CLSStruct(# (Funcs (X, the carrier of Y)),(FuncZero (X,Y)),(FuncAdd (X,Y)),(FuncExtMult (X,Y)) #) is ComplexLinearSpace by Th10;

end;
let Y be ComplexLinearSpace;

func ComplexVectSpace (X,Y) -> ComplexLinearSpace equals :: CLOPBAN1:def 2

CLSStruct(# (Funcs (X, the carrier of Y)),(FuncZero (X,Y)),(FuncAdd (X,Y)),(FuncExtMult (X,Y)) #);

coherence CLSStruct(# (Funcs (X, the carrier of Y)),(FuncZero (X,Y)),(FuncAdd (X,Y)),(FuncExtMult (X,Y)) #);

CLSStruct(# (Funcs (X, the carrier of Y)),(FuncZero (X,Y)),(FuncAdd (X,Y)),(FuncExtMult (X,Y)) #) is ComplexLinearSpace by Th10;

:: deftheorem defines ComplexVectSpace CLOPBAN1:def 2 :

for X being non empty set

for Y being ComplexLinearSpace holds ComplexVectSpace (X,Y) = CLSStruct(# (Funcs (X, the carrier of Y)),(FuncZero (X,Y)),(FuncAdd (X,Y)),(FuncExtMult (X,Y)) #);

for X being non empty set

for Y being ComplexLinearSpace holds ComplexVectSpace (X,Y) = CLSStruct(# (Funcs (X, the carrier of Y)),(FuncZero (X,Y)),(FuncAdd (X,Y)),(FuncExtMult (X,Y)) #);

registration
end;

registration

let X be non empty set ;

let Y be ComplexLinearSpace;

coherence

ComplexVectSpace (X,Y) is constituted-Functions by MONOID_0:80;

end;
let Y be ComplexLinearSpace;

coherence

ComplexVectSpace (X,Y) is constituted-Functions by MONOID_0:80;

definition

let X be non empty set ;

let Y be ComplexLinearSpace;

let f be VECTOR of (ComplexVectSpace (X,Y));

let x be Element of X;

:: original: .

redefine func f . x -> VECTOR of Y;

coherence

f . x is VECTOR of Y

end;
let Y be ComplexLinearSpace;

let f be VECTOR of (ComplexVectSpace (X,Y));

let x be Element of X;

:: original: .

redefine func f . x -> VECTOR of Y;

coherence

f . x is VECTOR of Y

proof end;

theorem :: CLOPBAN1:11

for X being non empty set

for Y being ComplexLinearSpace

for f, g, h being VECTOR of (ComplexVectSpace (X,Y)) holds

( h = f + g iff for x being Element of X holds h . x = (f . x) + (g . x) ) by LOPBAN_1:1;

for Y being ComplexLinearSpace

for f, g, h being VECTOR of (ComplexVectSpace (X,Y)) holds

( h = f + g iff for x being Element of X holds h . x = (f . x) + (g . x) ) by LOPBAN_1:1;

theorem Th12: :: CLOPBAN1:12

for X being non empty set

for Y being ComplexLinearSpace

for f, h being VECTOR of (ComplexVectSpace (X,Y))

for c being Complex holds

( h = c * f iff for x being Element of X holds h . x = c * (f . x) )

for Y being ComplexLinearSpace

for f, h being VECTOR of (ComplexVectSpace (X,Y))

for c being Complex holds

( h = c * f iff for x being Element of X holds h . x = c * (f . x) )

proof end;

definition

let X, Y be non empty CLSStruct ;

let IT be Function of X,Y;

end;
let IT be Function of X,Y;

attr IT is homogeneous means :Def3: :: CLOPBAN1:def 3

for x being VECTOR of X

for r being Complex holds IT . (r * x) = r * (IT . x);

for x being VECTOR of X

for r being Complex holds IT . (r * x) = r * (IT . x);

:: deftheorem Def3 defines homogeneous CLOPBAN1:def 3 :

for X, Y being non empty CLSStruct

for IT being Function of X,Y holds

( IT is homogeneous iff for x being VECTOR of X

for r being Complex holds IT . (r * x) = r * (IT . x) );

for X, Y being non empty CLSStruct

for IT being Function of X,Y holds

( IT is homogeneous iff for x being VECTOR of X

for r being Complex holds IT . (r * x) = r * (IT . x) );

registration

let X be non empty CLSStruct ;

let Y be ComplexLinearSpace;

ex b_{1} being Function of X,Y st

( b_{1} is additive & b_{1} is homogeneous )

end;
let Y be ComplexLinearSpace;

cluster non empty Relation-like the carrier of X -defined the carrier of Y -valued Function-like total quasi_total additive homogeneous for Element of bool [: the carrier of X, the carrier of Y:];

existence ex b

( b

proof end;

definition
end;

definition

let X, Y be ComplexLinearSpace;

ex b_{1} being Subset of (ComplexVectSpace ( the carrier of X,Y)) st

for x being set holds

( x in b_{1} iff x is LinearOperator of X,Y )

for b_{1}, b_{2} being Subset of (ComplexVectSpace ( the carrier of X,Y)) st ( for x being set holds

( x in b_{1} iff x is LinearOperator of X,Y ) ) & ( for x being set holds

( x in b_{2} iff x is LinearOperator of X,Y ) ) holds

b_{1} = b_{2}

end;
func LinearOperators (X,Y) -> Subset of (ComplexVectSpace ( the carrier of X,Y)) means :Def4: :: CLOPBAN1:def 4

for x being set holds

( x in it iff x is LinearOperator of X,Y );

existence for x being set holds

( x in it iff x is LinearOperator of X,Y );

ex b

for x being set holds

( x in b

proof end;

uniqueness for b

( x in b

( x in b

b

proof end;

:: deftheorem Def4 defines LinearOperators CLOPBAN1:def 4 :

for X, Y being ComplexLinearSpace

for b_{3} being Subset of (ComplexVectSpace ( the carrier of X,Y)) holds

( b_{3} = LinearOperators (X,Y) iff for x being set holds

( x in b_{3} iff x is LinearOperator of X,Y ) );

for X, Y being ComplexLinearSpace

for b

( b

( x in b

registration

let X, Y be ComplexLinearSpace;

coherence

( not LinearOperators (X,Y) is empty & LinearOperators (X,Y) is functional )

end;
coherence

( not LinearOperators (X,Y) is empty & LinearOperators (X,Y) is functional )

proof end;

theorem :: CLOPBAN1:14

for X, Y being ComplexLinearSpace holds CLSStruct(# (LinearOperators (X,Y)),(Zero_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Add_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Mult_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))) #) is Subspace of ComplexVectSpace ( the carrier of X,Y) by Th13, CSSPACE:11;

registration

let X, Y be ComplexLinearSpace;

( CLSStruct(# (LinearOperators (X,Y)),(Zero_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Add_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Mult_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))) #) is Abelian & CLSStruct(# (LinearOperators (X,Y)),(Zero_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Add_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Mult_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))) #) is add-associative & CLSStruct(# (LinearOperators (X,Y)),(Zero_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Add_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Mult_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))) #) is right_zeroed & CLSStruct(# (LinearOperators (X,Y)),(Zero_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Add_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Mult_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))) #) is right_complementable & CLSStruct(# (LinearOperators (X,Y)),(Zero_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Add_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Mult_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))) #) is vector-distributive & CLSStruct(# (LinearOperators (X,Y)),(Zero_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Add_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Mult_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))) #) is scalar-distributive & CLSStruct(# (LinearOperators (X,Y)),(Zero_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Add_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Mult_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))) #) is scalar-associative & CLSStruct(# (LinearOperators (X,Y)),(Zero_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Add_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Mult_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))) #) is scalar-unital ) by Th13, CSSPACE:11;

end;
cluster CLSStruct(# (LinearOperators (X,Y)),(Zero_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Add_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Mult_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))) #) -> right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ;

coherence ( CLSStruct(# (LinearOperators (X,Y)),(Zero_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Add_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Mult_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))) #) is Abelian & CLSStruct(# (LinearOperators (X,Y)),(Zero_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Add_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Mult_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))) #) is add-associative & CLSStruct(# (LinearOperators (X,Y)),(Zero_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Add_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Mult_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))) #) is right_zeroed & CLSStruct(# (LinearOperators (X,Y)),(Zero_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Add_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Mult_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))) #) is right_complementable & CLSStruct(# (LinearOperators (X,Y)),(Zero_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Add_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Mult_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))) #) is vector-distributive & CLSStruct(# (LinearOperators (X,Y)),(Zero_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Add_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Mult_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))) #) is scalar-distributive & CLSStruct(# (LinearOperators (X,Y)),(Zero_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Add_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Mult_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))) #) is scalar-associative & CLSStruct(# (LinearOperators (X,Y)),(Zero_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Add_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Mult_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))) #) is scalar-unital ) by Th13, CSSPACE:11;

definition

let X, Y be ComplexLinearSpace;

CLSStruct(# (LinearOperators (X,Y)),(Zero_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Add_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Mult_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))) #) is ComplexLinearSpace ;

end;
func C_VectorSpace_of_LinearOperators (X,Y) -> ComplexLinearSpace equals :: CLOPBAN1:def 5

CLSStruct(# (LinearOperators (X,Y)),(Zero_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Add_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Mult_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))) #);

coherence CLSStruct(# (LinearOperators (X,Y)),(Zero_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Add_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Mult_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))) #);

CLSStruct(# (LinearOperators (X,Y)),(Zero_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Add_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Mult_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))) #) is ComplexLinearSpace ;

:: deftheorem defines C_VectorSpace_of_LinearOperators CLOPBAN1:def 5 :

for X, Y being ComplexLinearSpace holds C_VectorSpace_of_LinearOperators (X,Y) = CLSStruct(# (LinearOperators (X,Y)),(Zero_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Add_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Mult_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))) #);

for X, Y being ComplexLinearSpace holds C_VectorSpace_of_LinearOperators (X,Y) = CLSStruct(# (LinearOperators (X,Y)),(Zero_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Add_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))),(Mult_ ((LinearOperators (X,Y)),(ComplexVectSpace ( the carrier of X,Y)))) #);

registration
end;

registration

let X, Y be ComplexLinearSpace;

coherence

C_VectorSpace_of_LinearOperators (X,Y) is constituted-Functions by MONOID_0:80;

end;
coherence

C_VectorSpace_of_LinearOperators (X,Y) is constituted-Functions by MONOID_0:80;

definition

let X, Y be ComplexLinearSpace;

let f be Element of (C_VectorSpace_of_LinearOperators (X,Y));

let v be VECTOR of X;

:: original: .

redefine func f . v -> VECTOR of Y;

coherence

f . v is VECTOR of Y

end;
let f be Element of (C_VectorSpace_of_LinearOperators (X,Y));

let v be VECTOR of X;

:: original: .

redefine func f . v -> VECTOR of Y;

coherence

f . v is VECTOR of Y

proof end;

theorem Th15: :: CLOPBAN1:15

for X, Y being ComplexLinearSpace

for f, g, h being VECTOR of (C_VectorSpace_of_LinearOperators (X,Y)) holds

( h = f + g iff for x being VECTOR of X holds h . x = (f . x) + (g . x) )

for f, g, h being VECTOR of (C_VectorSpace_of_LinearOperators (X,Y)) holds

( h = f + g iff for x being VECTOR of X holds h . x = (f . x) + (g . x) )

proof end;

theorem Th16: :: CLOPBAN1:16

for X, Y being ComplexLinearSpace

for f, h being VECTOR of (C_VectorSpace_of_LinearOperators (X,Y))

for c being Complex holds

( h = c * f iff for x being VECTOR of X holds h . x = c * (f . x) )

for f, h being VECTOR of (C_VectorSpace_of_LinearOperators (X,Y))

for c being Complex holds

( h = c * f iff for x being VECTOR of X holds h . x = c * (f . x) )

proof end;

theorem Th17: :: CLOPBAN1:17

for X, Y being ComplexLinearSpace holds 0. (C_VectorSpace_of_LinearOperators (X,Y)) = the carrier of X --> (0. Y)

proof end;

theorem Th19: :: CLOPBAN1:19

for X being ComplexNormSpace

for seq being sequence of X

for g being Point of X st seq is convergent & lim seq = g holds

( ||.seq.|| is convergent & lim ||.seq.|| = ||.g.|| )

for seq being sequence of X

for g being Point of X st seq is convergent & lim seq = g holds

( ||.seq.|| is convergent & lim ||.seq.|| = ||.g.|| )

proof end;

:: deftheorem Def6 defines Lipschitzian CLOPBAN1:def 6 :

for X, Y being ComplexNormSpace

for IT being LinearOperator of X,Y holds

( IT is Lipschitzian iff ex K being Real st

( 0 <= K & ( for x being VECTOR of X holds ||.(IT . x).|| <= K * ||.x.|| ) ) );

for X, Y being ComplexNormSpace

for IT being LinearOperator of X,Y holds

( IT is Lipschitzian iff ex K being Real st

( 0 <= K & ( for x being VECTOR of X holds ||.(IT . x).|| <= K * ||.x.|| ) ) );

theorem Th20: :: CLOPBAN1:20

for X, Y being ComplexNormSpace

for f being LinearOperator of X,Y st ( for x being VECTOR of X holds f . x = 0. Y ) holds

f is Lipschitzian

for f being LinearOperator of X,Y st ( for x being VECTOR of X holds f . x = 0. Y ) holds

f is Lipschitzian

proof end;

registration

let X, Y be ComplexNormSpace;

ex b_{1} being LinearOperator of X,Y st b_{1} is Lipschitzian

end;
cluster non empty Relation-like the carrier of X -defined the carrier of Y -valued Function-like total quasi_total additive homogeneous Lipschitzian for Element of bool [: the carrier of X, the carrier of Y:];

existence ex b

proof end;

definition

let X, Y be ComplexNormSpace;

ex b_{1} being Subset of (C_VectorSpace_of_LinearOperators (X,Y)) st

for x being set holds

( x in b_{1} iff x is Lipschitzian LinearOperator of X,Y )

for b_{1}, b_{2} being Subset of (C_VectorSpace_of_LinearOperators (X,Y)) st ( for x being set holds

( x in b_{1} iff x is Lipschitzian LinearOperator of X,Y ) ) & ( for x being set holds

( x in b_{2} iff x is Lipschitzian LinearOperator of X,Y ) ) holds

b_{1} = b_{2}

end;
func BoundedLinearOperators (X,Y) -> Subset of (C_VectorSpace_of_LinearOperators (X,Y)) means :Def7: :: CLOPBAN1:def 7

for x being set holds

( x in it iff x is Lipschitzian LinearOperator of X,Y );

existence for x being set holds

( x in it iff x is Lipschitzian LinearOperator of X,Y );

ex b

for x being set holds

( x in b

proof end;

uniqueness for b

( x in b

( x in b

b

proof end;

:: deftheorem Def7 defines BoundedLinearOperators CLOPBAN1:def 7 :

for X, Y being ComplexNormSpace

for b_{3} being Subset of (C_VectorSpace_of_LinearOperators (X,Y)) holds

( b_{3} = BoundedLinearOperators (X,Y) iff for x being set holds

( x in b_{3} iff x is Lipschitzian LinearOperator of X,Y ) );

for X, Y being ComplexNormSpace

for b

( b

( x in b

registration
end;

theorem :: CLOPBAN1:22

for X, Y being ComplexNormSpace holds CLSStruct(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))) #) is Subspace of C_VectorSpace_of_LinearOperators (X,Y) by Th21, CSSPACE:11;

registration

let X, Y be ComplexNormSpace;

( CLSStruct(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))) #) is Abelian & CLSStruct(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))) #) is add-associative & CLSStruct(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))) #) is right_zeroed & CLSStruct(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))) #) is right_complementable & CLSStruct(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))) #) is vector-distributive & CLSStruct(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))) #) is scalar-distributive & CLSStruct(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))) #) is scalar-associative & CLSStruct(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))) #) is scalar-unital ) by Th21, CSSPACE:11;

end;
cluster CLSStruct(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))) #) -> right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ;

coherence ( CLSStruct(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))) #) is Abelian & CLSStruct(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))) #) is add-associative & CLSStruct(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))) #) is right_zeroed & CLSStruct(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))) #) is right_complementable & CLSStruct(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))) #) is vector-distributive & CLSStruct(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))) #) is scalar-distributive & CLSStruct(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))) #) is scalar-associative & CLSStruct(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))) #) is scalar-unital ) by Th21, CSSPACE:11;

definition

let X, Y be ComplexNormSpace;

CLSStruct(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))) #) is ComplexLinearSpace ;

end;
func C_VectorSpace_of_BoundedLinearOperators (X,Y) -> ComplexLinearSpace equals :: CLOPBAN1:def 8

CLSStruct(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))) #);

coherence CLSStruct(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))) #);

CLSStruct(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))) #) is ComplexLinearSpace ;

:: deftheorem defines C_VectorSpace_of_BoundedLinearOperators CLOPBAN1:def 8 :

for X, Y being ComplexNormSpace holds C_VectorSpace_of_BoundedLinearOperators (X,Y) = CLSStruct(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))) #);

for X, Y being ComplexNormSpace holds C_VectorSpace_of_BoundedLinearOperators (X,Y) = CLSStruct(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))) #);

registration
end;

registration

let X, Y be ComplexNormSpace;

for b_{1} being Element of (C_VectorSpace_of_BoundedLinearOperators (X,Y)) holds

( b_{1} is Function-like & b_{1} is Relation-like )
;

end;
cluster -> Relation-like Function-like for Element of the carrier of (C_VectorSpace_of_BoundedLinearOperators (X,Y));

coherence for b

( b

definition

let X, Y be ComplexNormSpace;

let f be Element of (C_VectorSpace_of_BoundedLinearOperators (X,Y));

let v be VECTOR of X;

:: original: .

redefine func f . v -> VECTOR of Y;

coherence

f . v is VECTOR of Y

end;
let f be Element of (C_VectorSpace_of_BoundedLinearOperators (X,Y));

let v be VECTOR of X;

:: original: .

redefine func f . v -> VECTOR of Y;

coherence

f . v is VECTOR of Y

proof end;

theorem Th23: :: CLOPBAN1:23

for X, Y being ComplexNormSpace

for f, g, h being VECTOR of (C_VectorSpace_of_BoundedLinearOperators (X,Y)) holds

( h = f + g iff for x being VECTOR of X holds h . x = (f . x) + (g . x) )

for f, g, h being VECTOR of (C_VectorSpace_of_BoundedLinearOperators (X,Y)) holds

( h = f + g iff for x being VECTOR of X holds h . x = (f . x) + (g . x) )

proof end;

theorem Th24: :: CLOPBAN1:24

for X, Y being ComplexNormSpace

for f, h being VECTOR of (C_VectorSpace_of_BoundedLinearOperators (X,Y))

for c being Complex holds

( h = c * f iff for x being VECTOR of X holds h . x = c * (f . x) )

for f, h being VECTOR of (C_VectorSpace_of_BoundedLinearOperators (X,Y))

for c being Complex holds

( h = c * f iff for x being VECTOR of X holds h . x = c * (f . x) )

proof end;

theorem Th25: :: CLOPBAN1:25

for X, Y being ComplexNormSpace holds 0. (C_VectorSpace_of_BoundedLinearOperators (X,Y)) = the carrier of X --> (0. Y)

proof end;

definition

let X, Y be ComplexNormSpace;

let f be object ;

assume A1: f in BoundedLinearOperators (X,Y) ;

coherence

f is Lipschitzian LinearOperator of X,Y by A1, Def7;

end;
let f be object ;

assume A1: f in BoundedLinearOperators (X,Y) ;

coherence

f is Lipschitzian LinearOperator of X,Y by A1, Def7;

:: deftheorem Def9 defines modetrans CLOPBAN1:def 9 :

for X, Y being ComplexNormSpace

for f being object st f in BoundedLinearOperators (X,Y) holds

modetrans (f,X,Y) = f;

for X, Y being ComplexNormSpace

for f being object st f in BoundedLinearOperators (X,Y) holds

modetrans (f,X,Y) = f;

definition

let X, Y be ComplexNormSpace;

let u be LinearOperator of X,Y;

{ ||.(u . t).|| where t is VECTOR of X : ||.t.|| <= 1 } is non empty Subset of REAL

end;
let u be LinearOperator of X,Y;

func PreNorms u -> non empty Subset of REAL equals :: CLOPBAN1:def 10

{ ||.(u . t).|| where t is VECTOR of X : ||.t.|| <= 1 } ;

coherence { ||.(u . t).|| where t is VECTOR of X : ||.t.|| <= 1 } ;

{ ||.(u . t).|| where t is VECTOR of X : ||.t.|| <= 1 } is non empty Subset of REAL

proof end;

:: deftheorem defines PreNorms CLOPBAN1:def 10 :

for X, Y being ComplexNormSpace

for u being LinearOperator of X,Y holds PreNorms u = { ||.(u . t).|| where t is VECTOR of X : ||.t.|| <= 1 } ;

for X, Y being ComplexNormSpace

for u being LinearOperator of X,Y holds PreNorms u = { ||.(u . t).|| where t is VECTOR of X : ||.t.|| <= 1 } ;

theorem Th26: :: CLOPBAN1:26

for X, Y being ComplexNormSpace

for g being Lipschitzian LinearOperator of X,Y holds PreNorms g is bounded_above

for g being Lipschitzian LinearOperator of X,Y holds PreNorms g is bounded_above

proof end;

theorem :: CLOPBAN1:27

for X, Y being ComplexNormSpace

for g being LinearOperator of X,Y holds

( g is Lipschitzian iff PreNorms g is bounded_above )

for g being LinearOperator of X,Y holds

( g is Lipschitzian iff PreNorms g is bounded_above )

proof end;

definition

let X, Y be ComplexNormSpace;

ex b_{1} being Function of (BoundedLinearOperators (X,Y)),REAL st

for x being object st x in BoundedLinearOperators (X,Y) holds

b_{1} . x = upper_bound (PreNorms (modetrans (x,X,Y)))

for b_{1}, b_{2} being Function of (BoundedLinearOperators (X,Y)),REAL st ( for x being object st x in BoundedLinearOperators (X,Y) holds

b_{1} . x = upper_bound (PreNorms (modetrans (x,X,Y))) ) & ( for x being object st x in BoundedLinearOperators (X,Y) holds

b_{2} . x = upper_bound (PreNorms (modetrans (x,X,Y))) ) holds

b_{1} = b_{2}

end;
func BoundedLinearOperatorsNorm (X,Y) -> Function of (BoundedLinearOperators (X,Y)),REAL means :Def11: :: CLOPBAN1:def 11

for x being object st x in BoundedLinearOperators (X,Y) holds

it . x = upper_bound (PreNorms (modetrans (x,X,Y)));

existence for x being object st x in BoundedLinearOperators (X,Y) holds

it . x = upper_bound (PreNorms (modetrans (x,X,Y)));

ex b

for x being object st x in BoundedLinearOperators (X,Y) holds

b

proof end;

uniqueness for b

b

b

b

proof end;

:: deftheorem Def11 defines BoundedLinearOperatorsNorm CLOPBAN1:def 11 :

for X, Y being ComplexNormSpace

for b_{3} being Function of (BoundedLinearOperators (X,Y)),REAL holds

( b_{3} = BoundedLinearOperatorsNorm (X,Y) iff for x being object st x in BoundedLinearOperators (X,Y) holds

b_{3} . x = upper_bound (PreNorms (modetrans (x,X,Y))) );

for X, Y being ComplexNormSpace

for b

( b

b

theorem Th28: :: CLOPBAN1:28

for X, Y being ComplexNormSpace

for f being Lipschitzian LinearOperator of X,Y holds modetrans (f,X,Y) = f

for f being Lipschitzian LinearOperator of X,Y holds modetrans (f,X,Y) = f

proof end;

theorem Th29: :: CLOPBAN1:29

for X, Y being ComplexNormSpace

for f being Lipschitzian LinearOperator of X,Y holds (BoundedLinearOperatorsNorm (X,Y)) . f = upper_bound (PreNorms f)

for f being Lipschitzian LinearOperator of X,Y holds (BoundedLinearOperatorsNorm (X,Y)) . f = upper_bound (PreNorms f)

proof end;

definition

let X, Y be ComplexNormSpace;

CNORMSTR(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(BoundedLinearOperatorsNorm (X,Y)) #) is non empty CNORMSTR ;

end;
func C_NormSpace_of_BoundedLinearOperators (X,Y) -> non empty CNORMSTR equals :: CLOPBAN1:def 12

CNORMSTR(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(BoundedLinearOperatorsNorm (X,Y)) #);

coherence CNORMSTR(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(BoundedLinearOperatorsNorm (X,Y)) #);

CNORMSTR(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(BoundedLinearOperatorsNorm (X,Y)) #) is non empty CNORMSTR ;

:: deftheorem defines C_NormSpace_of_BoundedLinearOperators CLOPBAN1:def 12 :

for X, Y being ComplexNormSpace holds C_NormSpace_of_BoundedLinearOperators (X,Y) = CNORMSTR(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(BoundedLinearOperatorsNorm (X,Y)) #);

for X, Y being ComplexNormSpace holds C_NormSpace_of_BoundedLinearOperators (X,Y) = CNORMSTR(# (BoundedLinearOperators (X,Y)),(Zero_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Add_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(Mult_ ((BoundedLinearOperators (X,Y)),(C_VectorSpace_of_LinearOperators (X,Y)))),(BoundedLinearOperatorsNorm (X,Y)) #);

theorem Th30: :: CLOPBAN1:30

for X, Y being ComplexNormSpace holds the carrier of X --> (0. Y) = 0. (C_NormSpace_of_BoundedLinearOperators (X,Y))

proof end;

theorem Th31: :: CLOPBAN1:31

for X, Y being ComplexNormSpace

for f being Point of (C_NormSpace_of_BoundedLinearOperators (X,Y))

for g being Lipschitzian LinearOperator of X,Y st g = f holds

for t being VECTOR of X holds ||.(g . t).|| <= ||.f.|| * ||.t.||

for f being Point of (C_NormSpace_of_BoundedLinearOperators (X,Y))

for g being Lipschitzian LinearOperator of X,Y st g = f holds

for t being VECTOR of X holds ||.(g . t).|| <= ||.f.|| * ||.t.||

proof end;

theorem Th32: :: CLOPBAN1:32

for X, Y being ComplexNormSpace

for f being Point of (C_NormSpace_of_BoundedLinearOperators (X,Y)) holds 0 <= ||.f.||

for f being Point of (C_NormSpace_of_BoundedLinearOperators (X,Y)) holds 0 <= ||.f.||

proof end;

theorem Th33: :: CLOPBAN1:33

for X, Y being ComplexNormSpace

for f being Point of (C_NormSpace_of_BoundedLinearOperators (X,Y)) st f = 0. (C_NormSpace_of_BoundedLinearOperators (X,Y)) holds

0 = ||.f.||

for f being Point of (C_NormSpace_of_BoundedLinearOperators (X,Y)) st f = 0. (C_NormSpace_of_BoundedLinearOperators (X,Y)) holds

0 = ||.f.||

proof end;

registration

let X, Y be ComplexNormSpace;

for b_{1} being Element of (C_NormSpace_of_BoundedLinearOperators (X,Y)) holds

( b_{1} is Function-like & b_{1} is Relation-like )
;

end;
cluster -> Relation-like Function-like for Element of the carrier of (C_NormSpace_of_BoundedLinearOperators (X,Y));

coherence for b

( b

definition

let X, Y be ComplexNormSpace;

let f be Element of (C_NormSpace_of_BoundedLinearOperators (X,Y));

let v be VECTOR of X;

:: original: .

redefine func f . v -> VECTOR of Y;

coherence

f . v is VECTOR of Y

end;
let f be Element of (C_NormSpace_of_BoundedLinearOperators (X,Y));

let v be VECTOR of X;

:: original: .

redefine func f . v -> VECTOR of Y;

coherence

f . v is VECTOR of Y

proof end;

theorem Th34: :: CLOPBAN1:34

for X, Y being ComplexNormSpace

for f, g, h being Point of (C_NormSpace_of_BoundedLinearOperators (X,Y)) holds

( h = f + g iff for x being VECTOR of X holds h . x = (f . x) + (g . x) )

for f, g, h being Point of (C_NormSpace_of_BoundedLinearOperators (X,Y)) holds

( h = f + g iff for x being VECTOR of X holds h . x = (f . x) + (g . x) )

proof end;

theorem Th35: :: CLOPBAN1:35

for X, Y being ComplexNormSpace

for f, h being Point of (C_NormSpace_of_BoundedLinearOperators (X,Y))

for c being Complex holds

( h = c * f iff for x being VECTOR of X holds h . x = c * (f . x) )

for f, h being Point of (C_NormSpace_of_BoundedLinearOperators (X,Y))

for c being Complex holds

( h = c * f iff for x being VECTOR of X holds h . x = c * (f . x) )

proof end;

theorem Th36: :: CLOPBAN1:36

for X, Y being ComplexNormSpace

for f, g being Point of (C_NormSpace_of_BoundedLinearOperators (X,Y))

for c being Complex holds

( ( ||.f.|| = 0 implies f = 0. (C_NormSpace_of_BoundedLinearOperators (X,Y)) ) & ( f = 0. (C_NormSpace_of_BoundedLinearOperators (X,Y)) implies ||.f.|| = 0 ) & ||.(c * f).|| = |.c.| * ||.f.|| & ||.(f + g).|| <= ||.f.|| + ||.g.|| )

for f, g being Point of (C_NormSpace_of_BoundedLinearOperators (X,Y))

for c being Complex holds

( ( ||.f.|| = 0 implies f = 0. (C_NormSpace_of_BoundedLinearOperators (X,Y)) ) & ( f = 0. (C_NormSpace_of_BoundedLinearOperators (X,Y)) implies ||.f.|| = 0 ) & ||.(c * f).|| = |.c.| * ||.f.|| & ||.(f + g).|| <= ||.f.|| + ||.g.|| )

proof end;

theorem Th37: :: CLOPBAN1:37

for X, Y being ComplexNormSpace holds

( C_NormSpace_of_BoundedLinearOperators (X,Y) is reflexive & C_NormSpace_of_BoundedLinearOperators (X,Y) is discerning & C_NormSpace_of_BoundedLinearOperators (X,Y) is ComplexNormSpace-like )

( C_NormSpace_of_BoundedLinearOperators (X,Y) is reflexive & C_NormSpace_of_BoundedLinearOperators (X,Y) is discerning & C_NormSpace_of_BoundedLinearOperators (X,Y) is ComplexNormSpace-like )

proof end;

theorem Th38: :: CLOPBAN1:38

for X, Y being ComplexNormSpace holds C_NormSpace_of_BoundedLinearOperators (X,Y) is ComplexNormSpace

proof end;

registration

let X, Y be ComplexNormSpace;

( C_NormSpace_of_BoundedLinearOperators (X,Y) is reflexive & C_NormSpace_of_BoundedLinearOperators (X,Y) is discerning & C_NormSpace_of_BoundedLinearOperators (X,Y) is ComplexNormSpace-like & C_NormSpace_of_BoundedLinearOperators (X,Y) is vector-distributive & C_NormSpace_of_BoundedLinearOperators (X,Y) is scalar-distributive & C_NormSpace_of_BoundedLinearOperators (X,Y) is scalar-associative & C_NormSpace_of_BoundedLinearOperators (X,Y) is scalar-unital & C_NormSpace_of_BoundedLinearOperators (X,Y) is Abelian & C_NormSpace_of_BoundedLinearOperators (X,Y) is add-associative & C_NormSpace_of_BoundedLinearOperators (X,Y) is right_zeroed & C_NormSpace_of_BoundedLinearOperators (X,Y) is right_complementable ) by Th38;

end;
cluster C_NormSpace_of_BoundedLinearOperators (X,Y) -> non empty right_complementable Abelian add-associative right_zeroed discerning reflexive vector-distributive scalar-distributive scalar-associative scalar-unital ComplexNormSpace-like ;

coherence ( C_NormSpace_of_BoundedLinearOperators (X,Y) is reflexive & C_NormSpace_of_BoundedLinearOperators (X,Y) is discerning & C_NormSpace_of_BoundedLinearOperators (X,Y) is ComplexNormSpace-like & C_NormSpace_of_BoundedLinearOperators (X,Y) is vector-distributive & C_NormSpace_of_BoundedLinearOperators (X,Y) is scalar-distributive & C_NormSpace_of_BoundedLinearOperators (X,Y) is scalar-associative & C_NormSpace_of_BoundedLinearOperators (X,Y) is scalar-unital & C_NormSpace_of_BoundedLinearOperators (X,Y) is Abelian & C_NormSpace_of_BoundedLinearOperators (X,Y) is add-associative & C_NormSpace_of_BoundedLinearOperators (X,Y) is right_zeroed & C_NormSpace_of_BoundedLinearOperators (X,Y) is right_complementable ) by Th38;

theorem Th39: :: CLOPBAN1:39

for X, Y being ComplexNormSpace

for f, g, h being Point of (C_NormSpace_of_BoundedLinearOperators (X,Y)) holds

( h = f - g iff for x being VECTOR of X holds h . x = (f . x) - (g . x) )

for f, g, h being Point of (C_NormSpace_of_BoundedLinearOperators (X,Y)) holds

( h = f - g iff for x being VECTOR of X holds h . x = (f . x) - (g . x) )

proof end;

definition

let X be ComplexNormSpace;

end;
attr X is complete means :Def13: :: CLOPBAN1:def 13

for seq being sequence of X st seq is Cauchy_sequence_by_Norm holds

seq is convergent ;

for seq being sequence of X st seq is Cauchy_sequence_by_Norm holds

seq is convergent ;

:: deftheorem Def13 defines complete CLOPBAN1:def 13 :

for X being ComplexNormSpace holds

( X is complete iff for seq being sequence of X st seq is Cauchy_sequence_by_Norm holds

seq is convergent );

for X being ComplexNormSpace holds

( X is complete iff for seq being sequence of X st seq is Cauchy_sequence_by_Norm holds

seq is convergent );

registration

ex b_{1} being ComplexNormSpace st b_{1} is complete
by Def13, CSSPACE3:9;

end;

cluster non empty right_complementable Abelian add-associative right_zeroed discerning reflexive vector-distributive scalar-distributive scalar-associative scalar-unital ComplexNormSpace-like complete for CNORMSTR ;

existence ex b

Lm2: for e being Real

for seq being Real_Sequence st seq is convergent & ex k being Nat st

for i being Nat st k <= i holds

seq . i <= e holds

lim seq <= e

proof end;

theorem Th40: :: CLOPBAN1:40

for X being ComplexNormSpace

for seq being sequence of X st seq is convergent holds

( ||.seq.|| is convergent & lim ||.seq.|| = ||.(lim seq).|| )

for seq being sequence of X st seq is convergent holds

( ||.seq.|| is convergent & lim ||.seq.|| = ||.(lim seq).|| )

proof end;

theorem Th41: :: CLOPBAN1:41

for X, Y being ComplexNormSpace st Y is complete holds

for seq being sequence of (C_NormSpace_of_BoundedLinearOperators (X,Y)) st seq is Cauchy_sequence_by_Norm holds

seq is convergent

for seq being sequence of (C_NormSpace_of_BoundedLinearOperators (X,Y)) st seq is Cauchy_sequence_by_Norm holds

seq is convergent

proof end;

theorem Th42: :: CLOPBAN1:42

for X being ComplexNormSpace

for Y being ComplexBanachSpace holds C_NormSpace_of_BoundedLinearOperators (X,Y) is ComplexBanachSpace

for Y being ComplexBanachSpace holds C_NormSpace_of_BoundedLinearOperators (X,Y) is ComplexBanachSpace

proof end;

registration

let X be ComplexNormSpace;

let Y be ComplexBanachSpace;

coherence

C_NormSpace_of_BoundedLinearOperators (X,Y) is complete by Th42;

end;
let Y be ComplexBanachSpace;

coherence

C_NormSpace_of_BoundedLinearOperators (X,Y) is complete by Th42;