let N be with_zero set ; :: thesis: for T being InsType of the InstructionsF of (Trivial-AMI N) holds JumpParts T = {0}

let T be InsType of the InstructionsF of (Trivial-AMI N); :: thesis: JumpParts T = {0}

set A = { (JumpPart I) where I is Instruction of (Trivial-AMI N) : InsCode I = T } ;

{0} = { (JumpPart I) where I is Instruction of (Trivial-AMI N) : InsCode I = T }

let T be InsType of the InstructionsF of (Trivial-AMI N); :: thesis: JumpParts T = {0}

set A = { (JumpPart I) where I is Instruction of (Trivial-AMI N) : InsCode I = T } ;

{0} = { (JumpPart I) where I is Instruction of (Trivial-AMI N) : InsCode I = T }

proof

assume a in { (JumpPart I) where I is Instruction of (Trivial-AMI N) : InsCode I = T } ; :: thesis: a in {0}

then ex I being Instruction of (Trivial-AMI N) st

( a = JumpPart I & InsCode I = T ) ;

then a = 0 by Lm1;

hence a in {0} by TARSKI:def 1; :: thesis: verum

end;

hence
JumpParts T = {0}
; :: thesis: verumhereby :: according to XBOOLE_0:def 10,TARSKI:def 3 :: thesis: { (JumpPart I) where I is Instruction of (Trivial-AMI N) : InsCode I = T } c= {0}

let a be object ; :: according to TARSKI:def 3 :: thesis: ( not a in { (JumpPart I) where I is Instruction of (Trivial-AMI N) : InsCode I = T } or a in {0} )let a be object ; :: thesis: ( a in {0} implies a in { (JumpPart I) where I is Instruction of (Trivial-AMI N) : InsCode I = T } )

assume a in {0} ; :: thesis: a in { (JumpPart I) where I is Instruction of (Trivial-AMI N) : InsCode I = T }

then A1: a = 0 by TARSKI:def 1;

A2: the InstructionsF of (Trivial-AMI N) = {[0,0,{}]} by EXTPRO_1:def 1;

then InsCodes the InstructionsF of (Trivial-AMI N) = {0} by MCART_1:92;

then A3: T = 0 by TARSKI:def 1;

reconsider I = [0,0,0] as Instruction of (Trivial-AMI N) by A2, TARSKI:def 1;

A4: JumpPart I = 0 ;

InsCode I = 0 ;

hence a in { (JumpPart I) where I is Instruction of (Trivial-AMI N) : InsCode I = T } by A1, A3, A4; :: thesis: verum

end;assume a in {0} ; :: thesis: a in { (JumpPart I) where I is Instruction of (Trivial-AMI N) : InsCode I = T }

then A1: a = 0 by TARSKI:def 1;

A2: the InstructionsF of (Trivial-AMI N) = {[0,0,{}]} by EXTPRO_1:def 1;

then InsCodes the InstructionsF of (Trivial-AMI N) = {0} by MCART_1:92;

then A3: T = 0 by TARSKI:def 1;

reconsider I = [0,0,0] as Instruction of (Trivial-AMI N) by A2, TARSKI:def 1;

A4: JumpPart I = 0 ;

InsCode I = 0 ;

hence a in { (JumpPart I) where I is Instruction of (Trivial-AMI N) : InsCode I = T } by A1, A3, A4; :: thesis: verum

assume a in { (JumpPart I) where I is Instruction of (Trivial-AMI N) : InsCode I = T } ; :: thesis: a in {0}

then ex I being Instruction of (Trivial-AMI N) st

( a = JumpPart I & InsCode I = T ) ;

then a = 0 by Lm1;

hence a in {0} by TARSKI:def 1; :: thesis: verum