let Y be non empty set ; :: thesis: for G being Subset of ()
for a, u being Function of Y,BOOLEAN
for PA being a_partition of Y holds (Ex (a,PA,G)) 'imp' u '<' Ex ((a 'imp' u),PA,G)

let G be Subset of (); :: thesis: for a, u being Function of Y,BOOLEAN
for PA being a_partition of Y holds (Ex (a,PA,G)) 'imp' u '<' Ex ((a 'imp' u),PA,G)

let a, u be Function of Y,BOOLEAN; :: thesis: for PA being a_partition of Y holds (Ex (a,PA,G)) 'imp' u '<' Ex ((a 'imp' u),PA,G)
let PA be a_partition of Y; :: thesis: (Ex (a,PA,G)) 'imp' u '<' Ex ((a 'imp' u),PA,G)
let z be Element of Y; :: according to BVFUNC_1:def 12 :: thesis: ( not ((Ex (a,PA,G)) 'imp' u) . z = TRUE or (Ex ((a 'imp' u),PA,G)) . z = TRUE )
A1: z in EqClass (z,(CompF (PA,G))) by EQREL_1:def 6;
assume ((Ex (a,PA,G)) 'imp' u) . z = TRUE ; :: thesis: (Ex ((a 'imp' u),PA,G)) . z = TRUE
then A2: ('not' ((Ex (a,PA,G)) . z)) 'or' (u . z) = TRUE by BVFUNC_1:def 8;
A3: ( u . z = TRUE or u . z = FALSE ) by XBOOLEAN:def 3;
now :: thesis: ( ( 'not' ((Ex (a,PA,G)) . z) = TRUE & (Ex ((a 'imp' u),PA,G)) . z = TRUE ) or ( u . z = TRUE & (Ex ((a 'imp' u),PA,G)) . z = TRUE ) )
per cases ( 'not' ((Ex (a,PA,G)) . z) = TRUE or u . z = TRUE ) by ;
case 'not' ((Ex (a,PA,G)) . z) = TRUE ; :: thesis: (Ex ((a 'imp' u),PA,G)) . z = TRUE
then A4: a . z <> TRUE by ;
(a 'imp' u) . z = ('not' (a . z)) 'or' (u . z) by BVFUNC_1:def 8
.= TRUE 'or' (u . z) by
.= TRUE by BINARITH:10 ;
hence (Ex ((a 'imp' u),PA,G)) . z = TRUE by ; :: thesis: verum
end;
case A5: u . z = TRUE ; :: thesis: (Ex ((a 'imp' u),PA,G)) . z = TRUE
(a 'imp' u) . z = ('not' (a . z)) 'or' (u . z) by BVFUNC_1:def 8
.= TRUE by ;
hence (Ex ((a 'imp' u),PA,G)) . z = TRUE by ; :: thesis: verum
end;
end;
end;
hence (Ex ((a 'imp' u),PA,G)) . z = TRUE ; :: thesis: verum