let f, g be PartFunc of REAL,REAL; :: thesis: for b being Real st left_closed_halfline b c= dom f & left_closed_halfline b c= dom g & f is_-infty_ext_Riemann_integrable_on b & g is_-infty_ext_Riemann_integrable_on b holds

( f + g is_-infty_ext_Riemann_integrable_on b & infty_ext_left_integral ((f + g),b) = (infty_ext_left_integral (f,b)) + (infty_ext_left_integral (g,b)) )

let b be Real; :: thesis: ( left_closed_halfline b c= dom f & left_closed_halfline b c= dom g & f is_-infty_ext_Riemann_integrable_on b & g is_-infty_ext_Riemann_integrable_on b implies ( f + g is_-infty_ext_Riemann_integrable_on b & infty_ext_left_integral ((f + g),b) = (infty_ext_left_integral (f,b)) + (infty_ext_left_integral (g,b)) ) )

assume that

A1: ( left_closed_halfline b c= dom f & left_closed_halfline b c= dom g ) and

A2: f is_-infty_ext_Riemann_integrable_on b and

A3: g is_-infty_ext_Riemann_integrable_on b ; :: thesis: ( f + g is_-infty_ext_Riemann_integrable_on b & infty_ext_left_integral ((f + g),b) = (infty_ext_left_integral (f,b)) + (infty_ext_left_integral (g,b)) )

consider Intg being PartFunc of REAL,REAL such that

A4: dom Intg = left_closed_halfline b and

A5: for x being Real st x in dom Intg holds

Intg . x = integral (g,x,b) and

A6: Intg is convergent_in-infty and

A7: infty_ext_left_integral (g,b) = lim_in-infty Intg by A3, Def8;

consider Intf being PartFunc of REAL,REAL such that

A8: dom Intf = left_closed_halfline b and

A9: for x being Real st x in dom Intf holds

Intf . x = integral (f,x,b) and

A10: Intf is convergent_in-infty and

A11: infty_ext_left_integral (f,b) = lim_in-infty Intf by A2, Def8;

set Intfg = Intf + Intg;

A12: ( dom (Intf + Intg) = left_closed_halfline b & ( for x being Real st x in dom (Intf + Intg) holds

(Intf + Intg) . x = integral ((f + g),x,b) ) )

( g < r & g in dom (Intf + Intg) )

for a being Real st a <= b holds

( f + g is_integrable_on ['a,b'] & (f + g) | ['a,b'] is bounded )

lim_in-infty (Intf + Intg) = (infty_ext_left_integral (f,b)) + (infty_ext_left_integral (g,b)) by A10, A11, A6, A7, A20, LIMFUNC1:91;

hence infty_ext_left_integral ((f + g),b) = (infty_ext_left_integral (f,b)) + (infty_ext_left_integral (g,b)) by A12, A24, A30, Def8; :: thesis: verum

( f + g is_-infty_ext_Riemann_integrable_on b & infty_ext_left_integral ((f + g),b) = (infty_ext_left_integral (f,b)) + (infty_ext_left_integral (g,b)) )

let b be Real; :: thesis: ( left_closed_halfline b c= dom f & left_closed_halfline b c= dom g & f is_-infty_ext_Riemann_integrable_on b & g is_-infty_ext_Riemann_integrable_on b implies ( f + g is_-infty_ext_Riemann_integrable_on b & infty_ext_left_integral ((f + g),b) = (infty_ext_left_integral (f,b)) + (infty_ext_left_integral (g,b)) ) )

assume that

A1: ( left_closed_halfline b c= dom f & left_closed_halfline b c= dom g ) and

A2: f is_-infty_ext_Riemann_integrable_on b and

A3: g is_-infty_ext_Riemann_integrable_on b ; :: thesis: ( f + g is_-infty_ext_Riemann_integrable_on b & infty_ext_left_integral ((f + g),b) = (infty_ext_left_integral (f,b)) + (infty_ext_left_integral (g,b)) )

consider Intg being PartFunc of REAL,REAL such that

A4: dom Intg = left_closed_halfline b and

A5: for x being Real st x in dom Intg holds

Intg . x = integral (g,x,b) and

A6: Intg is convergent_in-infty and

A7: infty_ext_left_integral (g,b) = lim_in-infty Intg by A3, Def8;

consider Intf being PartFunc of REAL,REAL such that

A8: dom Intf = left_closed_halfline b and

A9: for x being Real st x in dom Intf holds

Intf . x = integral (f,x,b) and

A10: Intf is convergent_in-infty and

A11: infty_ext_left_integral (f,b) = lim_in-infty Intf by A2, Def8;

set Intfg = Intf + Intg;

A12: ( dom (Intf + Intg) = left_closed_halfline b & ( for x being Real st x in dom (Intf + Intg) holds

(Intf + Intg) . x = integral ((f + g),x,b) ) )

proof

A20:
for r being Real ex g being Real st
thus A13: dom (Intf + Intg) =
(dom Intf) /\ (dom Intg)
by VALUED_1:def 1

.= left_closed_halfline b by A8, A4 ; :: thesis: for x being Real st x in dom (Intf + Intg) holds

(Intf + Intg) . x = integral ((f + g),x,b)

let x be Real; :: thesis: ( x in dom (Intf + Intg) implies (Intf + Intg) . x = integral ((f + g),x,b) )

assume A14: x in dom (Intf + Intg) ; :: thesis: (Intf + Intg) . x = integral ((f + g),x,b)

then A15: x <= b by A13, XXREAL_1:234;

then A16: ( f is_integrable_on ['x,b'] & f | ['x,b'] is bounded ) by A2;

A17: [.x,b.] c= left_closed_halfline b by XXREAL_1:265;

['x,b'] = [.x,b.] by A15, INTEGRA5:def 3;

then A18: ( ['x,b'] c= dom f & ['x,b'] c= dom g ) by A1, A17;

A19: ( g is_integrable_on ['x,b'] & g | ['x,b'] is bounded ) by A3, A15;

thus (Intf + Intg) . x = (Intf . x) + (Intg . x) by A14, VALUED_1:def 1

.= (integral (f,x,b)) + (Intg . x) by A8, A9, A13, A14

.= (integral (f,x,b)) + (integral (g,x,b)) by A4, A5, A13, A14

.= integral ((f + g),x,b) by A15, A18, A16, A19, INTEGRA6:12 ; :: thesis: verum

end;.= left_closed_halfline b by A8, A4 ; :: thesis: for x being Real st x in dom (Intf + Intg) holds

(Intf + Intg) . x = integral ((f + g),x,b)

let x be Real; :: thesis: ( x in dom (Intf + Intg) implies (Intf + Intg) . x = integral ((f + g),x,b) )

assume A14: x in dom (Intf + Intg) ; :: thesis: (Intf + Intg) . x = integral ((f + g),x,b)

then A15: x <= b by A13, XXREAL_1:234;

then A16: ( f is_integrable_on ['x,b'] & f | ['x,b'] is bounded ) by A2;

A17: [.x,b.] c= left_closed_halfline b by XXREAL_1:265;

['x,b'] = [.x,b.] by A15, INTEGRA5:def 3;

then A18: ( ['x,b'] c= dom f & ['x,b'] c= dom g ) by A1, A17;

A19: ( g is_integrable_on ['x,b'] & g | ['x,b'] is bounded ) by A3, A15;

thus (Intf + Intg) . x = (Intf . x) + (Intg . x) by A14, VALUED_1:def 1

.= (integral (f,x,b)) + (Intg . x) by A8, A9, A13, A14

.= (integral (f,x,b)) + (integral (g,x,b)) by A4, A5, A13, A14

.= integral ((f + g),x,b) by A15, A18, A16, A19, INTEGRA6:12 ; :: thesis: verum

( g < r & g in dom (Intf + Intg) )

proof

then A24:
Intf + Intg is convergent_in-infty
by A10, A6, LIMFUNC1:91;
let r be Real; :: thesis: ex g being Real st

( g < r & g in dom (Intf + Intg) )

end;( g < r & g in dom (Intf + Intg) )

per cases
( b < r or not b < r )
;

end;

suppose A21:
b < r
; :: thesis: ex g being Real st

( g < r & g in dom (Intf + Intg) )

( g < r & g in dom (Intf + Intg) )

reconsider g = b as Real ;

take g ; :: thesis: ( g < r & g in dom (Intf + Intg) )

thus ( g < r & g in dom (Intf + Intg) ) by A12, A21, XXREAL_1:234; :: thesis: verum

end;take g ; :: thesis: ( g < r & g in dom (Intf + Intg) )

thus ( g < r & g in dom (Intf + Intg) ) by A12, A21, XXREAL_1:234; :: thesis: verum

suppose A22:
not b < r
; :: thesis: ex g being Real st

( g < r & g in dom (Intf + Intg) )

( g < r & g in dom (Intf + Intg) )

reconsider g = r - 1 as Real ;

take g ; :: thesis: ( g < r & g in dom (Intf + Intg) )

A23: r - 1 < r - 0 by XREAL_1:15;

then g <= b by A22, XXREAL_0:2;

hence ( g < r & g in dom (Intf + Intg) ) by A12, A23, XXREAL_1:234; :: thesis: verum

end;take g ; :: thesis: ( g < r & g in dom (Intf + Intg) )

A23: r - 1 < r - 0 by XREAL_1:15;

then g <= b by A22, XXREAL_0:2;

hence ( g < r & g in dom (Intf + Intg) ) by A12, A23, XXREAL_1:234; :: thesis: verum

for a being Real st a <= b holds

( f + g is_integrable_on ['a,b'] & (f + g) | ['a,b'] is bounded )

proof

hence A30:
f + g is_-infty_ext_Riemann_integrable_on b
by A12, A24; :: thesis: infty_ext_left_integral ((f + g),b) = (infty_ext_left_integral (f,b)) + (infty_ext_left_integral (g,b))
let a be Real; :: thesis: ( a <= b implies ( f + g is_integrable_on ['a,b'] & (f + g) | ['a,b'] is bounded ) )

A25: [.a,b.] c= left_closed_halfline b by XXREAL_1:265;

assume A26: a <= b ; :: thesis: ( f + g is_integrable_on ['a,b'] & (f + g) | ['a,b'] is bounded )

then A27: ( f is_integrable_on ['a,b'] & g is_integrable_on ['a,b'] ) by A2, A3;

['a,b'] = [.a,b.] by A26, INTEGRA5:def 3;

then A28: ( ['a,b'] c= dom f & ['a,b'] c= dom g ) by A1, A25;

A29: ( f | ['a,b'] is bounded & g | ['a,b'] is bounded ) by A2, A3, A26;

then (f + g) | (['a,b'] /\ ['a,b']) is bounded by RFUNCT_1:83;

hence ( f + g is_integrable_on ['a,b'] & (f + g) | ['a,b'] is bounded ) by A28, A27, A29, INTEGRA6:11; :: thesis: verum

end;A25: [.a,b.] c= left_closed_halfline b by XXREAL_1:265;

assume A26: a <= b ; :: thesis: ( f + g is_integrable_on ['a,b'] & (f + g) | ['a,b'] is bounded )

then A27: ( f is_integrable_on ['a,b'] & g is_integrable_on ['a,b'] ) by A2, A3;

['a,b'] = [.a,b.] by A26, INTEGRA5:def 3;

then A28: ( ['a,b'] c= dom f & ['a,b'] c= dom g ) by A1, A25;

A29: ( f | ['a,b'] is bounded & g | ['a,b'] is bounded ) by A2, A3, A26;

then (f + g) | (['a,b'] /\ ['a,b']) is bounded by RFUNCT_1:83;

hence ( f + g is_integrable_on ['a,b'] & (f + g) | ['a,b'] is bounded ) by A28, A27, A29, INTEGRA6:11; :: thesis: verum

lim_in-infty (Intf + Intg) = (infty_ext_left_integral (f,b)) + (infty_ext_left_integral (g,b)) by A10, A11, A6, A7, A20, LIMFUNC1:91;

hence infty_ext_left_integral ((f + g),b) = (infty_ext_left_integral (f,b)) + (infty_ext_left_integral (g,b)) by A12, A24, A30, Def8; :: thesis: verum