let p, q be FinSequence of (); :: thesis: for v being Point of () st p is_in_the_area_of q holds
Rotate (p,v) is_in_the_area_of q

let v be Point of (); :: thesis: ( p is_in_the_area_of q implies Rotate (p,v) is_in_the_area_of q )
assume A1: p is_in_the_area_of q ; :: thesis: Rotate (p,v) is_in_the_area_of q
per cases ( v in rng p or not v in rng p ) ;
suppose A2: v in rng p ; :: thesis: Rotate (p,v) is_in_the_area_of q
now :: thesis: for n being Nat st n in dom (Rotate (p,v)) holds
( W-bound (L~ q) <= ((Rotate (p,v)) /. n) `1 & ((Rotate (p,v)) /. n) `1 <= E-bound (L~ q) & S-bound (L~ q) <= ((Rotate (p,v)) /. n) `2 & ((Rotate (p,v)) /. n) `2 <= N-bound (L~ q) )
let n be Nat; :: thesis: ( n in dom (Rotate (p,v)) implies ( W-bound (L~ q) <= ((Rotate (p,v)) /. b1) `1 & ((Rotate (p,v)) /. b1) `1 <= E-bound (L~ q) & S-bound (L~ q) <= ((Rotate (p,v)) /. b1) `2 & ((Rotate (p,v)) /. b1) `2 <= N-bound (L~ q) ) )
assume n in dom (Rotate (p,v)) ; :: thesis: ( W-bound (L~ q) <= ((Rotate (p,v)) /. b1) `1 & ((Rotate (p,v)) /. b1) `1 <= E-bound (L~ q) & S-bound (L~ q) <= ((Rotate (p,v)) /. b1) `2 & ((Rotate (p,v)) /. b1) `2 <= N-bound (L~ q) )
then n in dom p by FINSEQ_6:180;
then A3: n in Seg (len p) by FINSEQ_1:def 3;
then A4: n <= len p by FINSEQ_1:1;
A5: 0 + 1 <= n by ;
then A6: n - 1 >= 0 by XREAL_1:19;
per cases ( n <= len (p :- v) or n > len (p :- v) ) ;
suppose A7: n <= len (p :- v) ; :: thesis: ( W-bound (L~ q) <= ((Rotate (p,v)) /. b1) `1 & ((Rotate (p,v)) /. b1) `1 <= E-bound (L~ q) & S-bound (L~ q) <= ((Rotate (p,v)) /. b1) `2 & ((Rotate (p,v)) /. b1) `2 <= N-bound (L~ q) )
then n <= ((len p) - (v .. p)) + 1 by ;
then n - 1 <= (len p) - (v .. p) by XREAL_1:20;
then (n - 1) + (v .. p) <= len p by XREAL_1:19;
then A8: (n -' 1) + (v .. p) <= len p by ;
1 <= v .. p by ;
then 0 + 1 <= (n -' 1) + (v .. p) by XREAL_1:7;
then (n -' 1) + (v .. p) in Seg (len p) by ;
then A9: (n -' 1) + (v .. p) in dom p by FINSEQ_1:def 3;
A10: (Rotate (p,v)) /. n = p /. ((n -' 1) + (v .. p)) by ;
hence W-bound (L~ q) <= ((Rotate (p,v)) /. n) `1 by ; :: thesis: ( ((Rotate (p,v)) /. n) `1 <= E-bound (L~ q) & S-bound (L~ q) <= ((Rotate (p,v)) /. n) `2 & ((Rotate (p,v)) /. n) `2 <= N-bound (L~ q) )
thus ((Rotate (p,v)) /. n) `1 <= E-bound (L~ q) by ; :: thesis: ( S-bound (L~ q) <= ((Rotate (p,v)) /. n) `2 & ((Rotate (p,v)) /. n) `2 <= N-bound (L~ q) )
thus S-bound (L~ q) <= ((Rotate (p,v)) /. n) `2 by ; :: thesis: ((Rotate (p,v)) /. n) `2 <= N-bound (L~ q)
thus ((Rotate (p,v)) /. n) `2 <= N-bound (L~ q) by ; :: thesis: verum
end;
suppose A11: n > len (p :- v) ; :: thesis: ( W-bound (L~ q) <= ((Rotate (p,v)) /. b1) `1 & ((Rotate (p,v)) /. b1) `1 <= E-bound (L~ q) & S-bound (L~ q) <= ((Rotate (p,v)) /. b1) `2 & ((Rotate (p,v)) /. b1) `2 <= N-bound (L~ q) )
then n > ((len p) - (v .. p)) + 1 by ;
then n > (1 + (len p)) - (v .. p) ;
then n + (v .. p) > 1 + (len p) by XREAL_1:19;
then (n + (v .. p)) - (len p) > 1 by XREAL_1:20;
then A12: 1 <= (n + (v .. p)) -' (len p) by XREAL_0:def 2;
v .. p <= len p by ;
then n + (v .. p) <= (len p) + (len p) by ;
then (n + (v .. p)) - (len p) <= len p by XREAL_1:20;
then (n + (v .. p)) -' (len p) <= len p by XREAL_0:def 2;
then (n + (v .. p)) -' (len p) in Seg (len p) by ;
then A13: (n + (v .. p)) -' (len p) in dom p by FINSEQ_1:def 3;
A14: (Rotate (p,v)) /. n = p /. ((n + (v .. p)) -' (len p)) by ;
hence W-bound (L~ q) <= ((Rotate (p,v)) /. n) `1 by ; :: thesis: ( ((Rotate (p,v)) /. n) `1 <= E-bound (L~ q) & S-bound (L~ q) <= ((Rotate (p,v)) /. n) `2 & ((Rotate (p,v)) /. n) `2 <= N-bound (L~ q) )
thus ((Rotate (p,v)) /. n) `1 <= E-bound (L~ q) by ; :: thesis: ( S-bound (L~ q) <= ((Rotate (p,v)) /. n) `2 & ((Rotate (p,v)) /. n) `2 <= N-bound (L~ q) )
thus S-bound (L~ q) <= ((Rotate (p,v)) /. n) `2 by ; :: thesis: ((Rotate (p,v)) /. n) `2 <= N-bound (L~ q)
thus ((Rotate (p,v)) /. n) `2 <= N-bound (L~ q) by ; :: thesis: verum
end;
end;
end;
hence Rotate (p,v) is_in_the_area_of q by SPRECT_2:def 1; :: thesis: verum
end;
suppose not v in rng p ; :: thesis: Rotate (p,v) is_in_the_area_of q
hence Rotate (p,v) is_in_the_area_of q by ; :: thesis: verum
end;
end;