let L be non empty LattStr ; :: thesis: ( L is meet-idempotent & L is meet-associative & L is meet-commutative & L is satisfying_QLT1 & L is join-idempotent & L is join-associative & L is join-commutative & L is satisfying_QLT2 & L is QLT-selfmodular' implies L is modular )
assume A1: ( L is meet-idempotent & L is meet-associative & L is meet-commutative & L is satisfying_QLT1 & L is join-idempotent & L is join-associative & L is join-commutative & L is satisfying_QLT2 & L is QLT-selfmodular' ) ; :: thesis: L is modular
then ( ( for v0 being Element of L holds v0 "/\" v0 = v0 ) & ( for v2, v1, v0 being Element of L holds (v0 "/\" v1) "/\" v2 = v0 "/\" (v1 "/\" v2) ) & ( for v1, v0 being Element of L holds v0 "/\" v1 = v1 "/\" v0 ) & ( for v0, v2, v1 being Element of L holds (v0 "/\" (v1 "\/" v2)) "\/" (v0 "/\" v1) = v0 "/\" (v1 "\/" v2) ) & ( for v0 being Element of L holds v0 "\/" v0 = v0 ) & ( for v2, v1, v0 being Element of L holds (v0 "\/" v1) "\/" v2 = v0 "\/" (v1 "\/" v2) ) & ( for v1, v0 being Element of L holds v0 "\/" v1 = v1 "\/" v0 ) & ( for v0, v2, v1 being Element of L holds (v0 "\/" (v1 "/\" v2)) "/\" (v0 "\/" v1) = v0 "\/" (v1 "/\" v2) ) & ( for v2, v1, v0 being Element of L holds ((v0 "\/" v1) "/\" v2) "\/" v1 = ((v2 "\/" v1) "/\" v0) "\/" v1 ) ) by ;
then for v1, v2, v3 being Element of L holds (v1 "/\" v2) "\/" (v1 "/\" v3) = v1 "/\" (v2 "\/" (v1 "/\" v3)) by ThQLT6;
hence L is modular by ; :: thesis: verum