let n be Nat; :: thesis: for p being Point of ()
for r being positive Real
for f being Function of (),(Tball (p,r)) st n <> 0 & ( for a being Point of ()
for b being Point of () st a = b holds
f . a = (r * b) + p ) holds
f is being_homeomorphism

let p be Point of (); :: thesis: for r being positive Real
for f being Function of (),(Tball (p,r)) st n <> 0 & ( for a being Point of ()
for b being Point of () st a = b holds
f . a = (r * b) + p ) holds
f is being_homeomorphism

let r be positive Real; :: thesis: for f being Function of (),(Tball (p,r)) st n <> 0 & ( for a being Point of ()
for b being Point of () st a = b holds
f . a = (r * b) + p ) holds
f is being_homeomorphism

let f be Function of (),(Tball (p,r)); :: thesis: ( n <> 0 & ( for a being Point of ()
for b being Point of () st a = b holds
f . a = (r * b) + p ) implies f is being_homeomorphism )

assume that
A1: n <> 0 and
A2: for a being Point of ()
for b being Point of () st a = b holds
f . a = (r * b) + p ; :: thesis:
reconsider n1 = n as non zero Element of NAT by ;
reconsider x = p as Point of (TOP-REAL n1) ;
defpred S1[ Point of (TOP-REAL n1), set ] means \$2 = (r * \$1) + x;
set U = Tunit_ball n;
set B = Tball (x,r);
A3: for u being Point of (TOP-REAL n1) ex y being Point of (TOP-REAL n1) st S1[u,y] ;
consider F being Function of (TOP-REAL n1),(TOP-REAL n1) such that
A4: for x being Point of (TOP-REAL n1) holds S1[x,F . x] from defpred S2[ Point of (TOP-REAL n1), set ] means \$2 = (1 / r) * (\$1 - x);
A5: for u being Point of (TOP-REAL n1) ex y being Point of (TOP-REAL n1) st S2[u,y] ;
consider G being Function of (TOP-REAL n1),(TOP-REAL n1) such that
A6: for a being Point of (TOP-REAL n1) holds S2[a,G . a] from set f2 = (TOP-REAL n1) --> x;
set f1 = id (TOP-REAL n1);
dom G = the carrier of () by FUNCT_2:def 1;
then A7: dom (G | (Ball (x,r))) = Ball (x,r) by RELAT_1:62;
for p being Point of (TOP-REAL n1) holds G . p = ((1 / r) * ((id (TOP-REAL n1)) . p)) + ((- (1 / r)) * (((TOP-REAL n1) --> x) . p))
proof
let p be Point of (TOP-REAL n1); :: thesis: G . p = ((1 / r) * ((id (TOP-REAL n1)) . p)) + ((- (1 / r)) * (((TOP-REAL n1) --> x) . p))
thus ((1 / r) * ((id (TOP-REAL n1)) . p)) + ((- (1 / r)) * (((TOP-REAL n1) --> x) . p)) = ((1 / r) * p) + ((- (1 / r)) * (((TOP-REAL n1) --> x) . p))
.= ((1 / r) * p) + ((- (1 / r)) * x) by FUNCOP_1:7
.= ((1 / r) * p) - ((1 / r) * x) by RLVECT_1:79
.= (1 / r) * (p - x) by RLVECT_1:34
.= G . p by A6 ; :: thesis: verum
end;
then A8: G is continuous by TOPALG_1:16;
A9: dom f = [#] () by FUNCT_2:def 1;
A10: dom f = the carrier of () by FUNCT_2:def 1;
for p being Point of (TOP-REAL n1) holds F . p = (r * ((id (TOP-REAL n1)) . p)) + (1 * (((TOP-REAL n1) --> x) . p))
proof
let p be Point of (TOP-REAL n1); :: thesis: F . p = (r * ((id (TOP-REAL n1)) . p)) + (1 * (((TOP-REAL n1) --> x) . p))
thus (r * ((id (TOP-REAL n1)) . p)) + (1 * (((TOP-REAL n1) --> x) . p)) = (r * ((id (TOP-REAL n1)) . p)) + (((TOP-REAL n1) --> x) . p) by RLVECT_1:def 8
.= (r * p) + (((TOP-REAL n1) --> x) . p)
.= (r * p) + x by FUNCOP_1:7
.= F . p by A4 ; :: thesis: verum
end;
then A11: F is continuous by TOPALG_1:16;
A12: the carrier of (Tball (x,r)) = Ball (x,r) by MFOLD_0:2;
A13: the carrier of () = Ball ((0. ()),1) by MFOLD_0:2;
A14: for a being object st a in dom f holds
f . a = (F | (Ball ((0. ()),1))) . a
proof
let a be object ; :: thesis: ( a in dom f implies f . a = (F | (Ball ((0. ()),1))) . a )
assume A15: a in dom f ; :: thesis: f . a = (F | (Ball ((0. ()),1))) . a
reconsider y = a as Point of (TOP-REAL n1) by ;
thus f . a = (r * y) + x by
.= F . y by A4
.= (F | (Ball ((0. ()),1))) . a by ; :: thesis: verum
end;
A16: (1 / r) * r = 1 by XCMPLX_1:87;
A17: rng f = [#] (Tball (x,r))
proof
now :: thesis: for b being object st b in [#] (Tball (x,r)) holds
b in rng f
let b be object ; :: thesis: ( b in [#] (Tball (x,r)) implies b in rng f )
assume A18: b in [#] (Tball (x,r)) ; :: thesis: b in rng f
then reconsider c = b as Point of (TOP-REAL n1) by PRE_TOPC:25;
reconsider r1 = 1 / r as Real ;
set a = r1 * (c - x);
A19: |.((r1 * (c - x)) - (0. (TOP-REAL n1))).| = |.(r1 * (c - x)).| by RLVECT_1:13
.= |.r1.| * |.(c - x).| by TOPRNS_1:7
.= r1 * |.(c - x).| by ABSVALUE:def 1 ;
(1 / r) * |.(c - x).| < (1 / r) * r by ;
then A20: r1 * (c - x) in Ball ((0. ()),1) by ;
then f . (r1 * (c - x)) = (r * (r1 * (c - x))) + x by
.= ((r * (1 / r)) * (c - x)) + x by RLVECT_1:def 7
.= (c - x) + x by
.= b by RLVECT_4:1 ;
hence b in rng f by ; :: thesis: verum
end;
then [#] (Tball (x,r)) c= rng f ;
hence rng f = [#] (Tball (x,r)) by XBOOLE_0:def 10; :: thesis: verum
end;
now :: thesis: for a, b being object st a in dom f & b in dom f & f . a = f . b holds
a = b
let a, b be object ; :: thesis: ( a in dom f & b in dom f & f . a = f . b implies a = b )
assume that
A21: a in dom f and
A22: b in dom f and
A23: f . a = f . b ; :: thesis: a = b
reconsider a1 = a, b1 = b as Point of (TOP-REAL n1) by A13, A10, A21, A22;
A24: f . b1 = (r * b1) + x by ;
f . a1 = (r * a1) + x by ;
then r * a1 = ((r * b1) + x) - x by ;
hence a = b by ; :: thesis: verum
end;
then A25: f is one-to-one ;
A26: for a being object st a in dom (f ") holds
(f ") . a = (G | (Ball (x,r))) . a
proof
reconsider ff = f as Function ;
let a be object ; :: thesis: ( a in dom (f ") implies (f ") . a = (G | (Ball (x,r))) . a )
assume A27: a in dom (f ") ; :: thesis: (f ") . a = (G | (Ball (x,r))) . a
reconsider y = a as Point of (TOP-REAL n1) by ;
reconsider r1 = 1 / r as Real ;
set e = (1 / r) * (y - x);
A28: f is onto by ;
A29: |.(((1 / r) * (y - x)) - (0. (TOP-REAL n1))).| = |.((1 / r) * (y - x)).| by RLVECT_1:13
.= |.r1.| * |.(y - x).| by TOPRNS_1:7
.= r1 * |.(y - x).| by ABSVALUE:def 1 ;
(1 / r) * |.(y - x).| < (1 / r) * r by ;
then A30: (1 / r) * (y - x) in Ball ((0. ()),1) by ;
then f . ((1 / r) * (y - x)) = (r * ((1 / r) * (y - x))) + x by
.= ((r * (1 / r)) * (y - x)) + x by RLVECT_1:def 7
.= (y - x) + x by
.= y by RLVECT_4:1 ;
then (ff ") . a = (1 / r) * (y - x) by ;
hence (f ") . a = (1 / r) * (y - x) by
.= G . y by A6
.= (G | (Ball (x,r))) . a by ;
:: thesis: verum
end;
dom F = the carrier of () by FUNCT_2:def 1;
then dom (F | (Ball ((0. ()),1))) = Ball ((0. ()),1) by RELAT_1:62;
then A31: f is continuous by ;
A32: dom (f ") = the carrier of (Tball (x,r)) by FUNCT_2:def 1;
f " is continuous by ;
hence f is being_homeomorphism by ; :: thesis: verum