deffunc H5( Element of dom (carr g)) -> Element of the carrier of (g . \$1) = 0. (g . \$1);
A13: dom (carr g) = Seg (len (carr g)) by FINSEQ_1:def 3;
consider p being non empty FinSequence such that
A14: ( len p = len (carr g) & ( for i being Element of dom (carr g) holds p . i = H5(i) ) ) from A15: dom g = Seg (len g) by FINSEQ_1:def 3;
A16: now :: thesis: for i being object st i in dom (carr g) holds
p . i in (carr g) . i
let i be object ; :: thesis: ( i in dom (carr g) implies p . i in (carr g) . i )
assume i in dom (carr g) ; :: thesis: p . i in (carr g) . i
then reconsider x = i as Element of dom (carr g) ;
reconsider x9 = x as Element of dom g by ;
( p . x = 0. (g . x) & (carr g) . x9 = the carrier of (g . x9) ) by ;
hence p . i in (carr g) . i ; :: thesis: verum
end;
dom p = Seg (len p) by FINSEQ_1:def 3;
then reconsider t = p as Element of product (carr g) by ;
take t ; :: thesis: for i being Element of dom (carr g) holds t . i = 0. (g . i)
thus for i being Element of dom (carr g) holds t . i = 0. (g . i) by A14; :: thesis: verum