let s be State of SCM+FSA; :: thesis: for p being Instruction-Sequence of SCM+FSA
for I being really-closed keepInt0_1 Program of SCM+FSA st not p +* I halts_on Initialized s holds
for J being Program of SCM+FSA
for k being Nat holds Comput ((p +* I),(),k) = Comput ((p +* (I ";" J)),(),k)

let p be Instruction-Sequence of SCM+FSA; :: thesis: for I being really-closed keepInt0_1 Program of SCM+FSA st not p +* I halts_on Initialized s holds
for J being Program of SCM+FSA
for k being Nat holds Comput ((p +* I),(),k) = Comput ((p +* (I ";" J)),(),k)

let I be really-closed keepInt0_1 Program of SCM+FSA; :: thesis: ( not p +* I halts_on Initialized s implies for J being Program of SCM+FSA
for k being Nat holds Comput ((p +* I),(),k) = Comput ((p +* (I ";" J)),(),k) )

assume A1: not p +* I halts_on Initialized s ; :: thesis: for J being Program of SCM+FSA
for k being Nat holds Comput ((p +* I),(),k) = Comput ((p +* (I ";" J)),(),k)

set s1 = Initialized s;
set p1 = p +* I;
A2: I c= p +* I by FUNCT_4:25;
let J be Program of SCM+FSA; :: thesis: for k being Nat holds Comput ((p +* I),(),k) = Comput ((p +* (I ";" J)),(),k)
set s2 = Initialized s;
set p2 = p +* (I ";" J);
A3: I ";" J c= p +* (I ";" J) by FUNCT_4:25;
defpred S1[ Nat] means Comput ((p +* I),(),\$1) = Comput ((p +* (I ";" J)),(),\$1);
A4: for m being Nat st S1[m] holds
S1[m + 1]
proof
dom (I ";" J) = (dom I) \/ (dom (Reloc (J,(card I)))) by SCMFSA6A:39;
then A5: dom I c= dom (I ";" J) by XBOOLE_1:7;
set sx = Initialized s;
set px = p +* (I ";" J);
let m be Nat; :: thesis: ( S1[m] implies S1[m + 1] )
A6: Comput ((p +* I),(),(m + 1)) = Following ((p +* I),(Comput ((p +* I),(),m))) by EXTPRO_1:3
.= Exec ((CurInstr ((p +* I),(Comput ((p +* I),(),m)))),(Comput ((p +* I),(),m))) ;
A7: Comput ((p +* (I ";" J)),(),(m + 1)) = Following ((p +* (I ";" J)),(Comput ((p +* (I ";" J)),(),m))) by EXTPRO_1:3
.= Exec ((CurInstr ((p +* (I ";" J)),(Comput ((p +* (I ";" J)),(),m)))),(Comput ((p +* (I ";" J)),(),m))) ;
assume A8: Comput ((p +* I),(),m) = Comput ((p +* (I ";" J)),(),m) ; :: thesis: S1[m + 1]
IC () = 0 by MEMSTR_0:def 11;
then IC () in dom I by AFINSQ_1:65;
then A9: IC (Comput ((p +* I),(),m)) in dom I by ;
A10: (p +* I) /. (IC (Comput ((p +* I),(),m))) = (p +* I) . (IC (Comput ((p +* I),(),m))) by PBOOLE:143;
A11: (p +* (I ";" J)) /. (IC (Comput ((p +* (I ";" J)),(),m))) = (p +* (I ";" J)) . (IC (Comput ((p +* (I ";" J)),(),m))) by PBOOLE:143;
A12: CurInstr ((p +* I),(Comput ((p +* I),(),m))) = I . (IC (Comput ((p +* I),(),m))) by ;
then I . (IC (Comput ((p +* I),(),m))) <> halt SCM+FSA by ;
then CurInstr ((p +* I),(Comput ((p +* I),(),m))) = (I ";" J) . (IC (Comput ((p +* I),(),m))) by
.= CurInstr ((p +* (I ";" J)),(Comput ((p +* (I ";" J)),(),m))) by ;
hence S1[m + 1] by A8, A6, A7; :: thesis: verum
end;
A13: S1[ 0 ] ;
thus for k being Nat holds S1[k] from NAT_1:sch 2(A13, A4); :: thesis: verum