theorem Th2: :: ASYMPT_0:2

for f, g being eventually-positive Real_Sequence st f /" g is convergent & lim (f /" g) <> 0 holds

( g /" f is convergent & lim (g /" f) = (lim (f /" g)) " )

( g /" f is convergent & lim (g /" f) = (lim (f /" g)) " )