:: deftheorem Def5 defines commute WAYBEL29:def 5 :

for M being non empty set

for X, Y being non empty TopSpace

for b_{4} being Function of (oContMaps (X,(M -TOP_prod (M => Y)))),((oContMaps (X,Y)) |^ M) holds

( b_{4} = commute (X,M,Y) iff for f being continuous Function of X,(M -TOP_prod (M => Y)) holds b_{4} . f = commute f );

for M being non empty set

for X, Y being non empty TopSpace

for b

( b