:: On the compositions of macro instructions, Part II
:: by Noriko Asamoto , Yatsuka Nakamura , Piotr Rudnicki and Andrzej Trybulec
::
:: Received July 22, 1996
:: Copyright (c) 1996-2016 Association of Mizar Users
:: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland).
:: This code can be distributed under the GNU General Public Licence
:: version 3.0 or later, or the Creative Commons Attribution-ShareAlike
:: License version 3.0 or later, subject to the binding interpretation
:: detailed in file COPYING.interpretation.
:: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these
:: licenses, or see http://www.gnu.org/licenses/gpl.html and
:: http://creativecommons.org/licenses/by-sa/3.0/.
environ
vocabularies NUMBERS, SUBSET_1, AMI_1, SCMFSA_2, FSM_1, CARD_1, TARSKI,
SCMFSA6A, FUNCT_4, RELAT_1, XBOOLE_0, FUNCT_1, MSUALG_1, CIRCUIT2, AMI_3,
ARYTM_3, XXREAL_0, NAT_1, SF_MASTR, GRAPHSP, AMISTD_2, STRUCT_0,
VALUED_1, FUNCOP_1, SCMFSA6B, PARTFUN1, EXTPRO_1, RELOC, SCMFSA6C,
COMPOS_1, AMISTD_1;
notations TARSKI, XBOOLE_0, SUBSET_1, SETFAM_1, CARD_1, ORDINAL1, NUMBERS,
XCMPLX_0, XXREAL_0, NAT_1, FUNCT_7, INT_1, RELAT_1, FUNCT_1, PARTFUN1,
AFINSQ_1, PBOOLE, FINSEQ_1, FUNCOP_1, FUNCT_4, VALUED_1, STRUCT_0,
MEMSTR_0, COMPOS_0, COMPOS_1, EXTPRO_1, SCMFSA_2, AMISTD_1, AMISTD_2,
SCMFSA6A, SF_MASTR, SCMFSA_M;
constructors XXREAL_0, SCMFSA6A, SF_MASTR, AMISTD_1, AMISTD_2, MEMSTR_0,
RELSET_1, PRE_POLY, AMISTD_5, DOMAIN_1, PBOOLE, AMI_3, FUNCT_7, SCMFSA_1,
SCMFSA_M;
registrations ORDINAL1, FUNCOP_1, XREAL_0, NAT_1, INT_1, SCMFSA_2, SF_MASTR,
COMPOS_1, EXTPRO_1, SCMFSA_4, PRE_POLY, FUNCT_7, FUNCT_4, STRUCT_0,
MEMSTR_0, AMI_3, COMPOS_0, SCMFSA_M, AMISTD_1, SCMFSA10, AFINSQ_1;
requirements NUMERALS, REAL, BOOLE, SUBSET, ARITHM;
definitions EXTPRO_1, AMISTD_1;
equalities FUNCOP_1, SCMFSA6A, COMPOS_1, EXTPRO_1, MEMSTR_0, SCMFSA_2,
SCMFSA_M;
expansions AMISTD_1;
theorems RELAT_1, FUNCT_7, FUNCT_4, FUNCT_1, FUNCOP_1, TARSKI, NAT_1,
SCMFSA_2, MEMSTR_0, GRFUNC_1, SCMFSA6A, SF_MASTR, XBOOLE_0, XBOOLE_1,
XREAL_1, ORDINAL1, XXREAL_0, VALUED_1, PBOOLE, PARTFUN1, AFINSQ_1,
FINSEQ_4, COMPOS_1, EXTPRO_1, AMISTD_2, AMISTD_5, AMISTD_1, STRUCT_0,
AMI_2, COMPOS_0, SCMFSA_M;
schemes NAT_1;
begin :: General theory
reserve m, n for Nat,
x for set,
i for Instruction of SCM+FSA,
I for Program of SCM+FSA,
a for Int-Location,
f for FinSeq-Location,
l, l1 for Nat,
s,s1,s2 for State of SCM+FSA,
P,P1,P2 for Instruction-Sequence of SCM+FSA;
set SA0 = Start-At(0,SCM+FSA);
definition
let I be Program of SCM+FSA, s be State of SCM+FSA;
let P be Instruction-Sequence of SCM+FSA;
func IExec(I,P,s) -> State of SCM+FSA equals
Result(P+*I,Initialized s);
coherence;
end;
definition
let I be Program of SCM+FSA;
::$CD 2
attr I is keeping_0 means
:Def2:
for s being 0-started State of SCM+FSA
for P being Instruction-Sequence of SCM+FSA st I c= P
for k being Nat holds Comput(P,s,k).intloc 0 = s.intloc 0;
end;
registration
cluster Stop SCM+FSA -> parahalting keeping_0;
coherence
proof
set m = Stop SCM+FSA;
A1: 0 in dom m by COMPOS_1:3;
thus Stop SCM+FSA is parahalting
proof
let s be 0-started State of SCM+FSA;
A2: Start-At(0,SCM+FSA) c= s by MEMSTR_0:29;
let P be Instruction-Sequence of SCM+FSA such that
A3: m c= P;
dom(SA0) = {IC SCM+FSA} by FUNCOP_1:13;
then
A4: IC SCM+FSA in dom (SA0) by TARSKI:def 1;
take 0;
A5: dom P = NAT by PARTFUN1:def 2;
hence IC Comput(P,s,0) in dom P;
CurInstr(P,Comput(P,s,0)) = P.IC s by A5,PARTFUN1:def 6
.= P.IC Start-At(0,SCM+FSA) by A2,A4,GRFUNC_1:2
.= P.0 by FUNCOP_1:72
.= m.0 by A3,A1,GRFUNC_1:2
.= halt SCM+FSA;
hence CurInstr(P, Comput(P,s,0)) = halt SCM+FSA;
end;
let s be 0-started State of SCM+FSA;
A6: Start-At(0,SCM+FSA) c= s by MEMSTR_0:29;
let P;
assume
A7: m c= P;
let k be Nat;
A8: s = Comput(P,s,0);
dom P = NAT by PARTFUN1:def 2;
then
A9: P/.IC s = P.IC s by PARTFUN1:def 6;
CurInstr(P,s) = P.0 by A6,A9,MEMSTR_0:39
.= m.0 by A1,A7,GRFUNC_1:2
.= halt SCM+FSA;
hence Comput(P,s,k).intloc 0 = s.intloc 0 by A8,EXTPRO_1:5;
end;
end;
registration
cluster really-closed parahalting keeping_0 for MacroInstruction of SCM+FSA;
existence
proof
take Stop SCM+FSA;
thus thesis;
end;
end;
theorem Th1:
for s being 0-started State of SCM+FSA
for I being parahalting Program of SCM+FSA
for P being Instruction-Sequence of SCM+FSA
st I c= P
holds P halts_on s by AMISTD_1:def 11;
theorem Th2:
for s being State of SCM+FSA
for I being parahalting Program of SCM+FSA
st Initialize((intloc 0).-->1) c= s
for P being Instruction-Sequence of SCM+FSA
st I c= P
holds P halts_on s
proof
let s be State of SCM+FSA;
let I be parahalting Program of SCM+FSA;
A1: Start-At(0,SCM+FSA) c= Initialize((intloc 0).-->1) by FUNCT_4:25;
assume
A2: Initialize((intloc 0).-->1) c= s;
let P be Instruction-Sequence of SCM+FSA
such that
A3: I c= P;
Start-At(0,SCM+FSA) c= s by A2,A1,XBOOLE_1:1;
then s is 0-started by MEMSTR_0:29;
hence thesis by A3,AMISTD_1:def 11;
end;
Lm1:
for P being Instruction-Sequence of SCM+FSA
holds not P +*(IC s, goto IC s) halts_on s
proof
let P be Instruction-Sequence of SCM+FSA;
set Q = P +*(IC s, goto IC s);
defpred X[Nat] means IC Comput(Q,s,$1) = IC s;
A1: dom P = NAT by PARTFUN1:def 2;
A2: dom P = dom Q by FUNCT_7:30;
A3: now
let n;
assume X[n];
then
A4: CurInstr(Q,Comput(Q,s,n)) = Q.IC s by A2,A1,PARTFUN1:def 6
.= goto IC s by A1,FUNCT_7:31;
IC Comput(Q,s,n+1)
= IC Following(Q,Comput(Q,s,n)) by EXTPRO_1:3
.= IC s by A4,SCMFSA_2:69;
hence X[n+1];
end;
let n be Nat;
A5: X[0];
assume
A6: IC Comput(Q,s,n) in dom Q;
reconsider n as Element of NAT by ORDINAL1:def 12;
A7: for n holds X[n] from NAT_1:sch 2(A5,A3);
CurInstr(Q,Comput(Q,s,n))
= Q.IC Comput(Q,s,n) by A6,PARTFUN1:def 6
.= Q.IC s by A7
.= goto IC s by A1,FUNCT_7:31;
hence thesis;
end;
theorem
for I being really-closed parahalting Program of SCM+FSA,
a being read-write Int-Location
holds not a in UsedILoc I implies IExec(I,P,s).a = s.a
proof
let I be really-closed parahalting Program of SCM+FSA,
a be read-write Int-Location;
assume
A1: not a in UsedILoc I;
A2: I c= P+*I by FUNCT_4:25;
A3: Initialize((intloc 0).-->1) c= s +* Initialize((intloc 0).-->1)
by FUNCT_4:25;
then P+*I halts_on s +* Initialize((intloc 0).-->1) by Th2,A2;
then consider n such that
A4: Result(P+*I,s +* Initialize((intloc 0).-->1))
= Comput(P+*I,s +* Initialize((intloc 0).-->1),n) and
CurInstr(P+*I,
Result(P+*I,s +* Initialize((intloc 0).-->1))) = halt SCM+FSA by
EXTPRO_1:def 9;
A5: dom Initialize((intloc 0).-->1) =
dom((intloc 0).-->1) \/ dom Start-At(0,SCM+FSA) by FUNCT_4:def 1;
A6: not a in dom Start-At(0,SCM+FSA) by SCMFSA_2:102;
not a in {intloc 0} by TARSKI:def 1;
then not a in dom((intloc 0).-->1) by FUNCOP_1:13;
then
A7: not a in dom Initialize((intloc 0).-->1) by A5,A6,XBOOLE_0:def 3;
for m st m < n
holds IC Comput(P+*I,s+*Initialize((intloc 0).-->1),m) in dom I
proof
IC(s+*Initialize((intloc 0).-->1)) = 0 by A3,MEMSTR_0:47;
then IC(s+*Initialize((intloc 0).-->1)) in dom I by AFINSQ_1:65;
hence thesis by A2,AMISTD_1:21;
end;
hence (IExec(I,P,s)).a = (s +* Initialize((intloc 0).-->1)).a
by A1,A4,FUNCT_4:25,SF_MASTR:61
.= s.a by A7,FUNCT_4:11;
end;
theorem
for I being parahalting really-closed Program of SCM+FSA
holds not f in UsedI*Loc I implies (IExec(I,P,s)).f = s.f
proof
let I be parahalting really-closed Program of SCM+FSA;
assume
A1: not f in UsedI*Loc I;
A2: I c= P+*I by FUNCT_4:25;
A3: Initialize((intloc 0).-->1) c= s +* Initialize((intloc 0).-->1)
by FUNCT_4:25;
then P+*I halts_on s +* Initialize((intloc 0).-->1) by Th2,A2;
then consider n such that
A4: Result(P+*I,s +* Initialize((intloc 0).-->1))
= Comput(P+*I,s +* Initialize((intloc 0).-->1),n) and
CurInstr(P+*I,Result(P+*I,s +* Initialize((intloc 0).-->1)))
= halt SCM+FSA by EXTPRO_1:def 9;
A5: dom Initialize((intloc 0).-->1) =
dom((intloc 0).-->1) \/ dom Start-At(0,SCM+FSA) by FUNCT_4:def 1;
A6: not f in dom Start-At(0,SCM+FSA) by SCMFSA_2:103;
f <> intloc 0 by SCMFSA_2:58;
then not f in {intloc 0} by TARSKI:def 1;
then not f in dom((intloc 0).-->1) by FUNCOP_1:13;
then
A7: not f in dom Initialize((intloc 0).-->1) by A5,A6,XBOOLE_0:def 3;
for m st m < n
holds IC Comput(P+*I,s+*Initialize((intloc 0).-->1),m) in dom I
proof
IC(s+*Initialize((intloc 0).-->1)) = 0 by A3,MEMSTR_0:47;
then IC(s+*Initialize((intloc 0).-->1)) in dom I by AFINSQ_1:65;
hence thesis by A2,AMISTD_1:21;
end;
hence (IExec(I,P,s)).f = (s +* Initialize((intloc 0).-->1)).f
by A1,A4,FUNCT_4:25,SF_MASTR:63
.= s.f by A7,FUNCT_4:11;
end;
theorem
IC s = l & P.l = goto l implies not P halts_on s
proof
assume that
A1: IC s = l and
A2: P.l = goto l;
A3: P/.IC s = P.IC s by PBOOLE:143;
defpred X[Nat] means Comput(P,s,$1) = s;
A4: for m st X[m] holds X[m+1]
proof
let m;
A5: for f being FinSeq-Location holds Exec(goto l,s).f = s.f by SCMFSA_2:69;
A6: IC Exec(goto l,s) = IC s & for a being Int-Location holds Exec(goto l,
s).a = s.a by A1,SCMFSA_2:69;
assume
A7: Comput(P,s,m) = s;
thus Comput(P,s,m+1)
= Following(P,s) by A7,EXTPRO_1:3
.= s by A1,A2,A6,A5,A3,SCMFSA_2:104;
end;
let mm be Nat;
reconsider m=mm as Element of NAT by ORDINAL1:def 12;
A8: X[0];
for m holds X[m] from NAT_1:sch 2(A8,A4);
then
A9: X[m];
assume IC Comput(P,s,mm) in dom P;
thus CurInstr(P, Comput(P,s,mm)) <> halt SCM+FSA by A1,A2,A9,PBOOLE:143;
end;
registration
cluster parahalting -> non empty for Program of SCM+FSA;
coherence;
end;
theorem Th6:
for s1 being 0-started State of SCM+FSA
for P,Q being Instruction-Sequence of SCM+FSA
for J being parahalting really-closed Program of SCM+FSA st J c= P
for n being Nat st Reloc(J,n) c= Q
& IC s2 = n & DataPart s1 = DataPart s2
for i being Nat holds
IC Comput(P,s1,i) + n = IC Comput(Q,s2,i) &
IncAddr(CurInstr(P,Comput(P,s1,i)),n) = CurInstr(Q,Comput(Q,s2,i)) &
DataPart Comput(P,s1,i) = DataPart Comput(Q,s2,i)
proof
let s1 be 0-started State of SCM+FSA;
let P,Q be Instruction-Sequence of SCM+FSA;
let J be parahalting really-closed Program of SCM+FSA;
A1: Start-At(0,SCM+FSA) c= s1 by MEMSTR_0:29;
assume that
A2: J c= P;
set JAt = Start-At(0,SCM+FSA);
A3: 0 in dom J by AFINSQ_1:65;
A4: IC SCM+FSA in dom JAt by MEMSTR_0:15;
then
A5: P.IC s1 = P.IC JAt by A1,GRFUNC_1:2
.= P. 0 by FUNCOP_1:72
.= J. 0 by A3,A2,GRFUNC_1:2;
A6: IC Comput(P,s1,0) = IC s1
.= IC JAt by A1,A4,GRFUNC_1:2
.= 0 by FUNCOP_1:72;
A7: 0 in dom J by AFINSQ_1:65;
let n be Nat;
assume that
A8: Reloc(J,n) c= Q and
A9: IC s2 = n and
A10: DataPart s1 = DataPart s2;
A11: DataPart Comput(P,s1,0) = DataPart s2 by A10
.= DataPart Comput(Q,s2,0);
defpred P[Nat] means
IC Comput(P,s1,$1) + n = IC Comput(Q,s2,$1) &
IncAddr(CurInstr(P,Comput(P,s1,$1)),n) = CurInstr(Q,Comput(Q,s2,$1)) &
DataPart Comput(P,s1,$1) = DataPart Comput(Q,s2,$1);
A12: for k being Nat st P[k] holds P[k + 1]
proof
let k be Nat;
A13: Comput(P,s1,k+1)
= Following(P,Comput(P,s1,k)) by EXTPRO_1:3
.= Exec(CurInstr(P,Comput(P,s1,k)),Comput(P,s1,k));
reconsider l = IC Comput(P,s1,k+1) as Element of NAT;
reconsider j = CurInstr(P,Comput(P,s1,k+1)) as Instruction of SCM+FSA;
A14: Comput(Q,s2,k+1)
= Following(Q,Comput(Q,s2,k)) by EXTPRO_1:3
.= Exec(CurInstr(Q,Comput(Q,s2,k)),Comput(Q,s2,k));
IC s1 = 0 by MEMSTR_0:def 11;
then IC s1 in dom J by AFINSQ_1:65;
then
A15: IC Comput(P,s1,k+1) in dom J by A2,AMISTD_1:21;
assume
A16: P[k];
hence IC Comput(P,s1,k+1) + n = IC Comput(Q,s2,k+1) by A13,A14,SCMFSA6A:8;
then
A17: IC Comput(Q,s2,k+1) in dom Reloc(J,n) by A15,COMPOS_1:46;
A18: l in dom J by A15;
A19: dom(P) = NAT by PARTFUN1:def 2;
A20: dom(Q) = NAT by PARTFUN1:def 2;
j = P.IC Comput(P,s1,k+1) by A19,PARTFUN1:def 6
.= J.l by A15,A2,GRFUNC_1:2;
hence
IncAddr(CurInstr(P,Comput(P,s1,k+1)),n)
= Reloc(J,n).(l + n) by A18,COMPOS_1:35
.= (Reloc(J,n)).(IC Comput(Q,s2,k+1)) by A16,A13,A14,SCMFSA6A:8
.= Q.IC Comput(Q,s2,k+1) by A17,A8,GRFUNC_1:2
.= CurInstr(Q,Comput(Q,s2,k+1))
by A20,PARTFUN1:def 6;
thus thesis by A16,A13,A14,SCMFSA6A:8;
end;
let i be Nat;
0 in dom J by AFINSQ_1:65;
then
A21: 0 + n in dom Reloc(J,n) by COMPOS_1:46;
A22: dom Q = NAT by PARTFUN1:def 2;
dom P = NAT by PARTFUN1:def 2;
then IncAddr(CurInstr(P,Comput(P,s1,0)),n)
= Reloc(J,n).(0 + n) by A5,A7,COMPOS_1:35,PARTFUN1:def 6
.= Q.IC Comput(Q,s2,0) by A9,A21,A8,GRFUNC_1:2
.= CurInstr(Q,Comput(Q,s2,0)) by A22,PARTFUN1:def 6;
then
A23: P[0] by A9,A6,A11;
for k being Nat holds P[k] from NAT_1:sch 2(A23,A12);
hence thesis;
end;
theorem Th7:
for s being 0-started State of SCM+FSA
for I being parahalting really-closed Program of SCM+FSA st I c= P1 & I c= P2
for k being Nat holds
Comput(P1,s,k) = Comput(P2,s,k) &
CurInstr(P1,Comput(P1,s,k)) = CurInstr(P2,Comput(P2,s,k))
proof
let s be 0-started State of SCM+FSA;
let I be parahalting really-closed Program of SCM+FSA;
assume that
A1: I c= P1 and
A2: I c= P2;
hereby
let k be Nat;
IC s = 0 by MEMSTR_0:def 11;
then
A3: IC s in dom I by AFINSQ_1:65;
then
A4: IC Comput(P1,s,k) in dom I by A1,AMISTD_1:21;
A5: IC Comput(P2,s,k) in dom I by A2,A3,AMISTD_1:21;
for m being Nat st m < k
holds IC Comput(P2,s,m) in dom I by A2,AMISTD_1:21,A3;
hence
A6: Comput(P1,s,k) = Comput(P2,s,k) by A1,A2,AMISTD_2:10;
thus CurInstr(P2,Comput(P2,s,k))
= P2.IC Comput(P2,s,k) by PBOOLE:143
.= I.IC Comput(P2,s,k) by A5,A2,GRFUNC_1:2
.= P1.IC Comput(P1,s,k) by A6,A4,A1,GRFUNC_1:2
.= CurInstr(P1,Comput(P1,s,k)) by PBOOLE:143;
end;
end;
theorem Th8:
for s being 0-started State of SCM+FSA
for I being parahalting really-closed Program of SCM+FSA
st I c= P1 & I c= P2
holds LifeSpan(P1,s) = LifeSpan(P2,s) & Result(P1,s) = Result(P2,s)
proof
let s be 0-started State of SCM+FSA;
let I be parahalting really-closed Program of SCM+FSA;
assume that
A1: I c= P1 and
A2: I c= P2;
A3: P2 halts_on s by A2,AMISTD_1:def 11;
A4: P1 halts_on s by A1,AMISTD_1:def 11;
A5: now
let l be Nat;
assume
A6: CurInstr(P2,Comput(P2,s
,l)) = halt SCM+FSA;
CurInstr(P1,Comput(P1,s,l))
= CurInstr(P2,Comput(P2,s,l))
by Th7,A1,A2;
hence LifeSpan(P1,s) <= l by A4,A6,EXTPRO_1:def 15;
end;
CurInstr(P2,Comput(P2,s,LifeSpan(P1,s)))
= CurInstr(P1,Comput(P1,s,LifeSpan(P1,s)))
by Th7,A1,A2
.= halt SCM+FSA by A4,EXTPRO_1:def 15;
hence
A7: LifeSpan(P1,s) = LifeSpan(P2,s) by A5,A3,EXTPRO_1:def 15;
A8: Result(P2,s) = Comput(P2,s,LifeSpan(P1,s))
by A7,Th1,A2,EXTPRO_1:23;
Result(P1,s) = Comput(P1,s,LifeSpan(P1,s)) by Th1,A1,EXTPRO_1:23;
hence thesis by A8,Th7,A1,A2;
end;
::$CT 2
theorem
for I being keeping_0 parahalting Program of SCM+FSA
holds IExec(I,P,s).intloc 0 = 1
proof
let I be keeping_0 parahalting Program of SCM+FSA;
A1: Initialize((intloc 0).-->1) c= s+*Initialize((intloc 0).-->1)
by FUNCT_4:25;
A2: I c= P+*I by FUNCT_4:25;
P+*I halts_on s +* Initialize((intloc 0).-->1)
by Th2,A2,A1;
then
A3:
ex n st Result(P+*I,s +* Initialize((intloc 0).-->1))
= Comput(P+*I,s +* Initialize((intloc 0).-->1),n) &
CurInstr(P+*I,Result(P+*I,s +* Initialize((intloc 0).-->1)))
= halt SCM+FSA by EXTPRO_1:def 9;
thus IExec(I,P,s).intloc 0
= (Initialized s).intloc 0 by A3,Def2,A2
.= 1 by SCMFSA_M:9;
end;
begin :: The composition of macroinstructions
theorem Th10:
for s being 0-started State of SCM+FSA
for I being really-closed Program of SCM+FSA, J being Program of SCM+FSA
for P being Instruction-Sequence of SCM+FSA
st I c= P & P halts_on s
for m st m <= LifeSpan(P,s)
holds Comput(P,s,m) = Comput(P+*(I ";" J),s,m)
proof
let s be 0-started State of SCM+FSA;
let I be really-closed Program of SCM+FSA, J be Program of SCM+FSA;
let P be Instruction-Sequence of SCM+FSA such that
A1: I c= P;
assume that
A2: P halts_on s;
defpred X[Nat] means $1 <= LifeSpan(P,s) implies
Comput(P,s,$1) = Comput(P+*(I ";" J),s,$1);
A3: for m st X[m] holds X[m+1]
proof
let m;
assume
A4: m <= LifeSpan(P,s) implies
Comput(P,s,m) = Comput(P+*(I ";" J),s,m);
A5: dom(I ";" J) = dom I \/ dom Reloc(J, card I) by SCMFSA6A:39;
A6: {} c= Comput(P+*(I ";" J),s,m) &
dom I c= dom(I ";" J) by A5,XBOOLE_1:2,7;
A7: Comput(P,s,m+1) = Following(P,Comput(P,s,m)) by EXTPRO_1:3;
A8: Comput(P+*(I ";" J),s,m+1)
= Following(P+*(I ";" J),Comput(P+*(I ";" J),s,m)) by EXTPRO_1:3;
IC s = 0 by MEMSTR_0:def 11;
then IC s in dom I by AFINSQ_1:65;
then
A9: IC Comput(P,s,m) in dom I by A1,AMISTD_1:21;
dom P = NAT by PARTFUN1:def 2;
then
A10: CurInstr(P,Comput(P,s,m))
= P.IC( Comput(P,s,m)) by PARTFUN1:def 6
.= I.IC( Comput(P,s,m)) by A9,A1,GRFUNC_1:2;
assume
A11: m+1 <= LifeSpan(P,s);
A12: I ";" J c= P+*(I ";" J) by FUNCT_4:25;
A13: dom(P+*(I ";" J)) = NAT by PARTFUN1:def 2;
m < LifeSpan(P,s) by A11,NAT_1:13;
then
I.IC( Comput(P,s,m)) <> halt SCM+FSA by A2,A10,EXTPRO_1:def 15;
then
CurInstr(P,Comput(P,s,m))
= (I ";" J).IC( Comput(P,s,m)) by A9,A10,SCMFSA6A:15
.= (P+*(I ";" J)).IC( Comput(P,s,m)) by A9,A6,A12,GRFUNC_1:2
.= CurInstr(P+*(I ";" J),Comput(P+*(I ";" J),s,m))
by A13,A11,A4,NAT_1:13,PARTFUN1:def 6;
hence Comput(P,s,m+1) = Comput(P+*(I ";" J),s,m+1)
by A7,A8,A4,A11,NAT_1:13;
end;
A14: X[0];
thus for m holds X[m] from NAT_1:sch 2(A14,A3);
end;
theorem Th11:
for s being 0-started State of SCM+FSA
for P being Instruction-Sequence of SCM+FSA
for I being really-closed Program of SCM+FSA
st P+*I halts_on s & Directed I c= P
holds IC Comput(P,s,LifeSpan(P+*I,s) + 1) = card I
proof
let s be 0-started State of SCM+FSA;
let P be Instruction-Sequence of SCM+FSA;
let I be really-closed Program of SCM+FSA;
assume that
A1: P+*I halts_on s and
A2: Directed I c= P;
A3: I c= P+*I by FUNCT_4:25;
set s2 = s;
set m = LifeSpan(P+*I,s);
set l1 = IC Comput(P+*I,s,m);
A4: I c= P+*I by FUNCT_4:25;
IC s = 0 by MEMSTR_0:def 11;
then IC s in dom I by AFINSQ_1:65;
then
A5: l1 in dom I by A4,AMISTD_1:21;
set s1 = s;
A6: P+*(I ";" I) = P+*(I +* (I ";" I)) by SCMFSA6A:18
.= P+*I +* (I ";" I) by FUNCT_4:14;
now
let k be Nat;
defpred X[Nat] means $1 <= k implies
Comput(P+*(I ";" I),s1,$1) = Comput(P+*Directed I,s2,$1);
assume
A7: k <= m;
A8: for n being Nat st X[n] holds X[n+1]
proof
let n be Nat;
assume
A9: n <= k implies
Comput(P+*(I ";" I),s1,n) = Comput(P+*Directed I,s2,n);
A10: Comput(P+*Directed I,s2,n+1) = Following(P+*Directed I,
Comput(P+*Directed I,s2,n)) by EXTPRO_1:3
.= Exec(CurInstr(P+*Directed I,Comput(P+*Directed I,s2,n)),
Comput(P+*Directed I,s2,n));
A11: Comput(P+*(I ";" I),s1,n+1) = Following(P+*(I ";" I),
Comput(P+*(I ";" I),s1,n)) by EXTPRO_1:3
.= Exec(CurInstr(P+*(I ";" I),Comput(P+*(I ";" I),s1,n)),
Comput(P+*(I ";" I),s1,n));
A12: n <= n + 1 by NAT_1:12;
assume
A13: n + 1 <= k;
IC s = 0 by MEMSTR_0:def 11;
then
A14: IC s in dom I by AFINSQ_1:65;
n <= k by A13,A12,XXREAL_0:2;
then
Comput(P+*I,s,n) = Comput(P+*(I ";" I),s,n)
by A3,Th10,A6,A1,A7,XXREAL_0:2;
then IC Comput(P+*(I ";" I),s1,n) in dom I by A3,AMISTD_1:21,A14;
then
A15: IC Comput(P+*Directed I,s2,n) in dom Directed I
by A13,A9,A12,FUNCT_4:99,XXREAL_0:2;
dom(P+*Directed I) = NAT by PARTFUN1:def 2;
then
A16: (P+*Directed I)/.IC Comput(P+*Directed I,s2,n)
= (P+*Directed I).IC Comput(P+*Directed I,s2,n) by PARTFUN1:def 6;
A17: dom(P+*(I ";" I)) = NAT by PARTFUN1:def 2;
Directed I c= P+*Directed I by FUNCT_4:25;
then
A18: CurInstr(P+*Directed I,Comput(P+*Directed I,s2,n))
= (Directed I).IC Comput(P+*Directed I,s2,n) by A15,A16,GRFUNC_1:2;
A19: dom I c= dom (I ";" I) &
CurInstr(P+*(I ";" I),
Comput(P+*(I ";" I),s1,n)) = (P+*(I ";" I)).IC
Comput(P+*(I ";" I),s1,n ) by A17,PARTFUN1:def 6,SCMFSA6A:17;
A20: Directed I c= I ";" I by SCMFSA6A:16;
I ";" I c= P+*(I ";" I) by FUNCT_4:25;
then Directed I c= P+*(I ";" I) by A20,XBOOLE_1:1;
hence thesis
by A9,A13,A12,A18,A11,A10,A15,A19,GRFUNC_1:2,XXREAL_0:2;
end;
A21: X[0];
for n being Nat holds X[n] from NAT_1:sch 2(A21,A8);
then Comput(P+*(I ";" I),s1,k) = Comput(P+*Directed I,s2,k);
hence Comput(P+*I,s,k) = Comput(P+*Directed I,s2,k)
by A7,Th10,A6,A1,FUNCT_4:25;
end;
then
A22: Comput(P+*I,s,m) = Comput(P+*Directed I,s2,m);
A23: dom(P+*I) = NAT by PARTFUN1:def 2;
I c= P+*I by FUNCT_4:25;
then
A24: I.l1 = (P+*I).IC Comput(P+*I,s,m) by A5,GRFUNC_1:2
.= CurInstr(P+*I,Comput(P+*I,s,m)) by A23,PARTFUN1:def 6
.= halt SCM+FSA by A1,EXTPRO_1:def 15;
IC Comput(P+*Directed I,s2,m) in dom Directed I by A5,A22,FUNCT_4:99;
then
A25: (P +* Directed I).l1 = (Directed I).l1 by A22,FUNCT_4:13
.= goto card I by A5,A24,FUNCT_4:106;
A26: P+*Directed I = P by A2,FUNCT_4:98;
A27: dom(P+*Directed I) = NAT by PARTFUN1:def 2;
Comput(P+*Directed I,s2,m+1)
= Following(P+*Directed I,Comput(P+*Directed I,s2,m)) by EXTPRO_1:3
.= Exec(goto card I, Comput(P+*Directed I,s2,m))
by A27,A22,A25,PARTFUN1:def 6;
hence IC Comput(P,s,LifeSpan(P+*I,s) + 1) = card I
by A26,SCMFSA_2:69;
end;
theorem Th12:
for s being 0-started State of SCM+FSA
for P being Instruction-Sequence of SCM+FSA
for I being really-closed Program of SCM+FSA
st P+*I halts_on s & Directed I c= P
holds DataPart Comput(P,s,LifeSpan(P+*I,s))
= DataPart Comput(P,s,LifeSpan(P+*I,s)+ 1)
proof
let s be 0-started State of SCM+FSA;
let P be Instruction-Sequence of SCM+FSA;
let I be really-closed Program of SCM+FSA;
assume that
A1: P+*I halts_on s and
A2: Directed I c= P;
A3: I c= P+*I by FUNCT_4:25;
set m = LifeSpan(P+*I,s);
set l1 = IC Comput(P+*I,s,m);
IC s = 0 by MEMSTR_0:def 11;
then IC s in dom I by AFINSQ_1:65;
then
A4: l1 in dom I by A3,AMISTD_1:21;
now
let k be Nat;
defpred X[Nat] means $1 <= k implies
Comput(P+*I+*(I ";" I),s,$1) = Comput(P,s,$1);
assume
A5: k <= m;
A6: for n being Nat st X[n] holds X[n+1]
proof
A7: Directed I c= I ";" I by SCMFSA6A:16;
let n be Nat;
A8: dom I c= dom (I ";" I) by SCMFSA6A:17;
assume
A9: n <= k implies
Comput(P+*I+*(I ";" I),s,n) = Comput(P,s,n);
A10: Comput(P,s,n+1) = Following(P,Comput(P,s,n)) by EXTPRO_1:3
.= Exec(CurInstr(P,Comput(P,s,n)),Comput(P,s,n));
A11: Comput(P+*I+*(I ";" I),s,n+1) =
Following(P+*I+*(I ";" I),Comput(P+*I+*(I ";" I),s,n))
by EXTPRO_1:3
.= Exec(CurInstr(P+*I+*(I ";" I),Comput(P+*I+*(I ";" I),s,n)),
Comput(P+*I+*(I ";" I),s,n));
A12: n <= n + 1 by NAT_1:12;
assume
A13: n + 1 <= k;
IC s = 0 by MEMSTR_0:def 11;
then
A14: IC s in dom I by AFINSQ_1:65;
n <= k by A13,A12,XXREAL_0:2;
then
Comput(P+*I,s,n) = Comput(P+*I+*(I ";" I),s,n)
by Th10,A5,A3,A1,XXREAL_0:2;
then
A15: IC Comput(P+*I+*(I ";" I),s,n) in dom I by A3,AMISTD_1:21,A14;
then
A16: IC Comput(P,s,n) in dom Directed I by A13,A9,A12,FUNCT_4:99,XXREAL_0:2;
A17: dom P = NAT by PARTFUN1:def 2;
A18: CurInstr(P,Comput(P,s,n))
= P.IC Comput(P,s,n) by A17,PARTFUN1:def 6
.= (Directed I).IC Comput(P,s,n) by A16,A2,GRFUNC_1:2;
A19: dom(P+*I+*(I ";" I)) = NAT by PARTFUN1:def 2;
CurInstr(P+*I+*(I ";" I),Comput(P+*I+*(I ";" I),s,n))
= (P+*I+*(I ";" I)).IC Comput(P+*I+*(I ";" I),s,n) by A19,PARTFUN1:def 6
.= (I ";" I).IC Comput(P+*I+*(I ";" I),s,n) by A8,A15,FUNCT_4:13
.= (Directed I).IC Comput(P+*I+*(I ";" I),s,n)
by A7,A13,A16,A9,A12,GRFUNC_1:2,XXREAL_0:2;
hence thesis
by A9,A13,A12,A18,A11,A10,XXREAL_0:2;
end;
A20: X[0];
for n being Nat holds X[n] from NAT_1:sch 2(A20,A6);
then Comput(P+*I+*(I ";" I),s,k) = Comput(P,s,k);
hence Comput(P+*I,s,k) = Comput(P,s,k) by A5,A1,Th10,FUNCT_4:25;
end;
then
A21: Comput(P+*I,s,m) = Comput(P,s,m);
A22: dom(P+*I) = NAT by PARTFUN1:def 2;
I c= P+*I by FUNCT_4:25;
then
A23: I.l1 = (P+*I).IC Comput(P+*I,s,m) by A4,GRFUNC_1:2
.= CurInstr(P+*I,Comput(P+*I,s,m))by A22,PARTFUN1:def 6
.= halt SCM+FSA by A1,EXTPRO_1:def 15;
IC Comput(P,s,m) in dom Directed I by A4,A21,FUNCT_4:99;
then
A24: P.l1 = (Directed I).l1 by A21,A2,GRFUNC_1:2
.= goto card I by A4,A23,FUNCT_4:106;
A25: dom P = NAT by PARTFUN1:def 2;
Comput(P,s,m+1) = Following(P,Comput(P,s,m)) by EXTPRO_1:3
.= Exec(goto card I, Comput(P,s,m)) by A21,A24,A25,PARTFUN1:def 6;
then
( for a being Int-Location holds Comput(P,s,m+1).a = Comput(P,s, m).a)&
for f being FinSeq-Location holds Comput(P,s,m+1).f =
Comput(P,s,m). f by SCMFSA_2:69;
hence thesis by SCMFSA_M:2;
end;
theorem Th13:
for I being parahalting really-closed Program of SCM+FSA st
I c= P & Initialize((intloc 0).-->1) c= s
holds for k being Nat st k <= LifeSpan(P,s)
holds CurInstr(P+*Directed I,
Comput(P+*Directed I,s,k)) <> halt SCM+FSA
proof
let I be parahalting really-closed Program of SCM+FSA;
set m = LifeSpan(P,s);
assume that
A1: I c= P and
A2: Initialize((intloc 0).-->1) c= s;
A3: Start-At(0,SCM+FSA) c= s by A2,MEMSTR_0:50;
then s is 0-started by MEMSTR_0:29;
then
A4: P halts_on s by A1,AMISTD_1:def 11;
reconsider s1 = s as 0-started State of SCM+FSA by A3,MEMSTR_0:29;
IC s1 = 0 by MEMSTR_0:def 11;
then
A5: IC s in dom I by AFINSQ_1:65;
A6: now
let k be Nat;
defpred X[Nat] means $1 <= k implies
Comput(P+*(I ";" I),s1,$1) = Comput(P+*Directed I,s,$1);
assume
A7: k <= m;
A8: for n being Nat st X[n] holds X[n+1]
proof
A9: Directed I c= I ";" I by SCMFSA6A:16;
let n be Nat;
A10: dom I c= dom (I ";" I) by SCMFSA6A:17;
assume
A11: n <= k implies
Comput(P+*(I ";" I),s1,n) = Comput(P+*Directed I,s,n);
A12: Comput(P+*Directed I,s,n+1) =
Following(P+*Directed I,Comput(P+*Directed I,s,n))
by EXTPRO_1:3
.= Exec(CurInstr(P+*Directed I,Comput(P+*Directed I,s,n)),
Comput(P+*Directed I,s,n));
A13: Comput(P+*(I ";" I),s1,n+1) =
Following(P+*(I ";" I),Comput(P+*(I ";" I),s1,n)) by EXTPRO_1:3
.= Exec(CurInstr(P+*(I ";" I),Comput(P+*(I ";" I),s1,n)),
Comput(P+*(I ";" I),s1,n));
A14: n <= n + 1 by NAT_1:12;
assume
A15: n + 1 <= k;
n <= k by A15,A14,XXREAL_0:2;
then Comput(P,s,n) = Comput(P+*(I ";" I),s1,n)
by A4,A1,Th10,A7,XXREAL_0:2;
then
A16: IC Comput(P+*(I ";" I),s1,n) in dom I by A1,AMISTD_1:21,A5;
then
A17: IC Comput(P+*Directed I,s,n) in dom Directed I
by A15,A11,A14,FUNCT_4:99,XXREAL_0:2;
dom(P+*Directed I) = NAT by PARTFUN1:def 2;
then
A18: CurInstr(P+*Directed I,Comput(P+*Directed I,s,n))
= (P+*Directed I).IC Comput(P+*Directed I,s,n) by PARTFUN1:def 6
.= (Directed I).IC Comput(P+*Directed I,s,n) by A17,FUNCT_4:13;
dom(P+*(I ";" I)) = NAT by PARTFUN1:def 2;
then
CurInstr(P+*(I ";" I),Comput(P+*(I ";" I),s1,n))
= (P+*(I ";" I)).IC Comput(P+*(I ";" I),s1,n) by PARTFUN1:def 6
.= (I ";" I).IC Comput(P+*(I ";" I),s1,n) by A10,A16,FUNCT_4:13
.= (Directed I).IC Comput(P+*(I ";" I),s1,n)
by A9,A15,A11,A14,A17,GRFUNC_1:2,XXREAL_0:2;
hence thesis by A11,A15,A14,A18,A13,A12,XXREAL_0:2;
end;
A19: X[0];
for n being Nat holds X[n] from NAT_1:sch 2(A19,A8);
then Comput(P+*(I ";" I),s1,k) = Comput(P+*Directed I,s,k);
hence Comput(P,s,k) = Comput(P+*Directed I,s,k) by A4,A7,Th10,A1;
end;
let k be Nat;
set lk = IC Comput(P,s,k);
A20: dom I = dom Directed I by FUNCT_4:99;
A21: IC Comput(P,s1,k) in dom I by A1,AMISTD_1:21,A5;
then
A22: (Directed I).lk in rng Directed I by A20,FUNCT_1:def 3;
A23: dom(P+*Directed I) = NAT by PARTFUN1:def 2;
assume k <= LifeSpan(P,s);
then lk = IC Comput(P+*Directed I,s,k) by A6;
then
A24: CurInstr(P+*Directed I,Comput(P+*Directed I,s,k))
= (P+*Directed I).lk by A23,PARTFUN1:def 6
.= (Directed I).lk by A20,A21,FUNCT_4:13;
thus CurInstr(P+*Directed I,Comput(P+*Directed I,s,k)) <> halt SCM+FSA
by A24,A22,SCMFSA6A:1;
end;
theorem Th14:
for s being 0-started State of SCM+FSA
for P being Instruction-Sequence of SCM+FSA
for I being really-closed Program of SCM+FSA st P+*I halts_on s
for J being Program of SCM+FSA, k being Nat
st k <= LifeSpan(P+*I,s)
holds Comput(P+*I,s,k) = Comput(P+*(I ";" J), s,k)
proof
let s be 0-started State of SCM+FSA;
let P be Instruction-Sequence of SCM+FSA;
let I be really-closed Program of SCM+FSA;
assume
A1: P+*I halts_on s;
let J be Program of SCM+FSA;
A2: I c= P+*I by FUNCT_4:25;
defpred X[Nat] means $1 <= LifeSpan(P+*I,s) implies
Comput(P+*I,s,$1) = Comput(P+*(I ";" J),s,$1);
A3: for m st X[m] holds X[m+1]
proof
dom(I ";" J) = dom I \/ dom Reloc(J, card I) by SCMFSA6A:39;
then
A4: dom I c= dom(I ";" J) by XBOOLE_1:7;
let m;
assume
A5: m <= LifeSpan(P+*I,s) implies
Comput(P+*I,s,m) = Comput(P+*(I ";" J),s,m);
A6: Comput(P+*I,s,m+1)
= Following(P+*I,Comput(P+*I,s,m)) by EXTPRO_1:3
.= Exec(CurInstr(P+*I,Comput(P+*I,s,m)),Comput(P+*I,s,m));
A7: Comput(P+*(I ";" J),s,m+1)
= Following(P+*(I ";" J),Comput(P+*(I ";" J),s,m)) by EXTPRO_1:3
.= Exec(CurInstr(P+*(I ";" J),Comput(P+*(I ";" J),s,m)),
Comput(P+*(I ";" J),s,m));
IC s = 0 by MEMSTR_0:def 11;
then IC s in dom I by AFINSQ_1:65;
then
A8: IC Comput(P+*I,s,m) in dom I by A2,AMISTD_1:21;
A9: I c= P+*I by FUNCT_4:25;
dom(P+*I) = NAT by PARTFUN1:def 2;
then
A10: CurInstr(P+*I,Comput(P+*I,s,m))
= (P+*I).IC Comput(P+*I,s,m) by PARTFUN1:def 6
.= I.IC Comput(P+*I,s,m) by A8,A9,GRFUNC_1:2;
assume
A11: m+1 <= LifeSpan(P+*I,s);
A12: I ";" J c= P+*(I ";" J) by FUNCT_4:25;
A13: dom(P+*(I ";" J)) = NAT by PARTFUN1:def 2;
m < LifeSpan(P+*I,s) by A11,NAT_1:13;
then I.IC( Comput(P+*I,s,m)) <> halt SCM+FSA by A1,A10,EXTPRO_1:def 15;
then
CurInstr(P+*I,Comput(P+*I,s,m))
= (I ";" J).IC( Comput(P+*I,s,m)) by A8,A10,SCMFSA6A:15
.= (P+*(I ";" J)).IC Comput(P+*(I ";" J),s,m)
by A11,A8,A4,A12,A5,GRFUNC_1:2,NAT_1:13
.= CurInstr(P+*(I ";" J),Comput(P+*(I ";" J),s,m))
by A13,PARTFUN1:def 6;
hence thesis by A6,A7,A5,A11,NAT_1:13;
end;
A14: X[0];
thus for k being Nat holds X[k] from NAT_1:sch 2(A14, A3);
end;
Lm2: for I being keeping_0 parahalting really-closed Program of SCM+FSA,
J being parahalting really-closed Program of SCM+FSA,
s being State of SCM+FSA
st I ";" J c= P &Initialize((intloc 0).-->1) c= s
holds IC Comput(P,s,LifeSpan(P+*I,s) + 1) = card I &
DataPart Comput(P,s,LifeSpan(P+*I,s) + 1)
= DataPart (Comput(P+*I,s,LifeSpan(P+*I,s)) +* Initialize((intloc 0).-->1)) &
Reloc(J,card I) c= P &
Comput(P,s,LifeSpan(P+*I,s) + 1).intloc 0 = 1 & P halts_on s &
LifeSpan(P,s) = LifeSpan(P+*I,s) + 1 +
LifeSpan(P+*I+*J,Result(P+*I,s) +* Initialize((intloc 0).-->1)) &
(J is keeping_0 implies (Result(P,s)).intloc 0 = 1)
proof
set D = Data-Locations SCM+FSA;
let I be keeping_0 parahalting really-closed Program of SCM+FSA;
let J be parahalting really-closed Program of SCM+FSA;
let s be State of SCM+FSA;
set s3 = Comput(P+*I,s,LifeSpan(P+*I,s)) +* Initialize((intloc 0).-->1);
set m1 = LifeSpan(P+*I,s);
set m3 = LifeSpan(P+*I+*J,s3);
A1: dom Directed I = dom I by FUNCT_4:99;
assume that
A2: I ";" J c= P and
A3: Initialize((intloc 0).-->1) c= s;
A4: Start-At(0,SCM+FSA) c=Initialize((intloc 0).-->1) by FUNCT_4:25;
then
A5: SA0 c= s by A3,XBOOLE_1:1;
A6: Directed I c= I ";" J by SCMFSA6A:16;
A7: P +* Directed I = P by A6,A2,FUNCT_4:98,XBOOLE_1:1;
A8: P = P +*(I ";" J) by A2,FUNCT_4:98;
A9: s is 0-started State of SCM+FSA by A5,MEMSTR_0:29;
then
A10: P+*I halts_on s by Th1,FUNCT_4:25;
hence
A11: IC Comput(P,s,LifeSpan(P+*I,s) + 1) = card I by Th11,A6,A2,A9,XBOOLE_1:1;
A12: now
let x be object;
A13: dom DataPart Initialize((intloc 0).-->1)
c= dom Initialize((intloc 0).-->1) by RELAT_1:60;
assume
A14: x in dom DataPart Initialize((intloc 0).-->1);
A15: x in D by A14,RELAT_1:57;
A16: I c= P+* I by FUNCT_4:25;
per cases by A14,A13,SCMFSA_M:11,TARSKI:def 2;
suppose
A17: x = intloc 0;
then
A18: x in dom Initialize((intloc 0).-->1) by SCMFSA_M:11,TARSKI:def 2;
thus (DataPart Initialize((intloc 0).-->1)).x
= 1 by A17,A15,FUNCT_1:49,SCMFSA_M:12
.= s.x by A3,A18,A17,GRFUNC_1:2,SCMFSA_M:12
.= (Comput(P+*I,s,m1)).x by A17,Def2,A16,A9
.= (DataPart Comput(P+*I,s,m1)).x by A15,FUNCT_1:49;
end;
suppose
x = IC SCM+FSA;
then not x in Data-Locations SCM+FSA by STRUCT_0:3;
hence (DataPart (Initialize((intloc 0).-->1))).x
= (DataPart Comput(P+*I,s,m1)).x
by A14,RELAT_1:57;
end;
end;
set s4 = Comput(P,s,m1+1);
reconsider m = m1 + 1 + m3 as Element of NAT by ORDINAL1:def 12;
A19: Initialize((intloc 0).-->1) c= s3 by FUNCT_4:25;
J c= P+*I+*J by FUNCT_4:25;
then
A20: P+*I+*J halts_on s3 by A19,Th2;
A21: dom Initialize((intloc 0).-->1)
c= the carrier of SCM+FSA by RELAT_1:def 18;
dom DataPart Initialize((intloc 0).-->1)
= dom Initialize((intloc 0).-->1) /\ D by RELAT_1:61;
then dom DataPart Initialize((intloc 0).-->1)
c= (the carrier of SCM+FSA) /\ D by A21,XBOOLE_1:26;
then dom DataPart Initialize((intloc 0).-->1)
c= dom ( Comput(P+*I,s,m1)) /\ D
by PARTFUN1:def 2;
then dom DataPart Initialize((intloc 0).-->1)
c= dom DataPart Comput(P+*I,s,m1)
by RELAT_1:61;
then
DataPart s3 = DataPart Comput(P+*I,s,m1) +*
DataPart Initialize((intloc 0).-->1) &
DataPart Initialize((intloc 0).-->1)
c= DataPart Comput(P+*I,s,m1) by A12,FUNCT_4:71,GRFUNC_1:2;
then
A22: DataPart Comput(P+*I,s,m1) = DataPart s3 by FUNCT_4:98;
s = s +* SA0 by A4,A3,FUNCT_4:98,XBOOLE_1:1;
then DataPart Comput(P,s,m1) = DataPart s3 by A22,A8,Th14,A10;
hence
A23: DataPart Comput(P,s,m1+1) = DataPart s3 by A10,Th12,A6,A2,A9,XBOOLE_1:1;
Reloc(J,card I) c= I ";" J by SCMFSA6A:38;
hence
A24: Reloc(J,card I) c= P by A2,XBOOLE_1:1;
intloc 0 in Int-Locations by AMI_2:def 16;
then
A25: intloc 0 in D by SCMFSA_2:100,XBOOLE_0:def 3;
hence s4.intloc 0 = (DataPart s3).intloc 0 by A23,FUNCT_1:49
.= s3.intloc 0 by A25,FUNCT_1:49
.= 1 by FUNCT_4:13,SCMFSA_M:10,12;
A26: Comput(P,s,m1+1+m3) = Comput(P,Comput(P,s,m1+1),m3) by EXTPRO_1:4;
A27: J c= P+*I+*J by FUNCT_4:25;
then IncAddr(CurInstr(P+*I+*J,Comput(P+*I+*J,s3,m3)),card I)
= CurInstr(P,Comput(P,s4,m3)) by A11,A23,Th6,A24;
then
A28: CurInstr(P,Comput(P,s,m))
= IncAddr (halt SCM+FSA,card I) by A20,A26,EXTPRO_1:def 15
.= halt SCM+FSA by COMPOS_0:4;
hence
A29: P halts_on s by EXTPRO_1:29;
A30: now
let k be Element of NAT;
assume m1 + 1 + k < m;
then
A31: k < m3 by XREAL_1:6;
assume
A32: CurInstr(P,Comput(P,s,m1+1+k)) = halt SCM+FSA;
A33: InsCode halt SCM+FSA = 0 by COMPOS_1:70;
IncAddr(CurInstr(P+*I+*J,Comput(P+*I+*J,s3,k)),card I)
= CurInstr(P,Comput(P,s4,k)) by A11,A23,Th6,A27,A24
.= halt SCM+FSA by A32,EXTPRO_1:4;
then InsCode CurInstr(P+*I+*J,Comput(P+*I+*J,s3,k)) = 0
by A33,COMPOS_0:def 9;
then CurInstr(P+*I+*J,Comput(P+*I+*J,s3,k))
= halt SCM+FSA by SCMFSA_2:95;
hence contradiction by A20,A31,EXTPRO_1:def 15;
end;
now
let k be Nat;
assume
A34: k < m;
per cases;
suppose
A35: k <= m1;
P+*I+*Directed I = P+*Directed I by A1,FUNCT_4:74;
hence CurInstr(P,Comput(P,s,k)) <> halt SCM+FSA
by A3,Th13,A35,A7,FUNCT_4:25;
end;
suppose
m1 < k;
then m1 + 1 <= k by NAT_1:13;
then consider kk being Nat such that
A36: m1 + 1 + kk = k by NAT_1:10;
kk in NAT by ORDINAL1:def 12;
hence CurInstr(P,Comput(P,s,k))
<> halt SCM+FSA
by A30,A34,A36;
end;
end;
then
A37: for k being Nat st CurInstr(P,Comput(P,s,k)) = halt SCM+FSA
holds m <= k;
then
A38: LifeSpan(P,s) = m by A28,A29,EXTPRO_1:def 15;
P+*I halts_on s by Th2,A3,FUNCT_4:25;
then Comput(P+*I,s,LifeSpan(P+*I,s))
= Result(P+*I,s) by EXTPRO_1:23;
hence LifeSpan(P,s) = LifeSpan(P+*I,s) + 1 +
LifeSpan(P+*I+*J,Result(P+*I,s) +*
Initialize((intloc 0).-->1)) by A37,A28,A29,EXTPRO_1:def 15;
hereby
A39: DataPart Comput(P+*I+*J,s3,m3) = DataPart Comput(P,s4,m3)
by A11,A23,Th6,A27,A24;
A40: J c= P+*I+*J by FUNCT_4:25;
assume
A41: J is keeping_0;
thus (Result(P,s)).intloc 0 = Comput(P,s,m).intloc 0 by A29,A38,EXTPRO_1:23
.= Comput(P,s4,m3).intloc 0 by EXTPRO_1:4
.= Comput(P+*I+*J,s3,m3).intloc 0 by A39,SCMFSA_M:2
.= s3.intloc 0 by A41,A40
.= 1 by A19,GRFUNC_1:2,SCMFSA_M:10,12;
end;
end;
registration
let I, J be parahalting really-closed Program of SCM+FSA;
cluster I ";" J -> parahalting;
coherence
proof
set D = Data-Locations SCM+FSA;
let s be 0-started State of SCM+FSA;
let P be Instruction-Sequence of SCM+FSA
such that
A1: I ";" J c= P;
set JAt = Start-At(0,SCM+FSA);
set s3 = Initialize Comput(P+*I,s,LifeSpan(P+*I,s));
set m1 = LifeSpan(P+*I,s);
set m3 = LifeSpan(P+*I+*J,s3);
reconsider kk = DataPart JAt as Function;
A2: now
let x be object;
assume x in dom DataPart JAt;
then
A3: x in dom JAt /\ D by RELAT_1:61;
x in dom JAt by A3,XBOOLE_0:def 4;
then x in {IC SCM+FSA} by FUNCOP_1:13;
then x = IC SCM+FSA by TARSKI:def 1;
then not x in Data-Locations SCM+FSA by STRUCT_0:3;
hence kk.x = (DataPart Comput(P+*I,s,m1)).x by A3,XBOOLE_0:def 4;
end;
JAt c= s3 by FUNCT_4:25;
then dom JAt c= dom s3 by GRFUNC_1:2;
then
A4: dom JAt c= the carrier of SCM+FSA by PARTFUN1:def 2;
dom DataPart JAt = dom JAt /\ D by RELAT_1:61;
then dom DataPart JAt c= (the carrier of SCM+FSA) /\ D by A4,XBOOLE_1:26;
then dom DataPart JAt c= dom ( Comput(P+*I,s,m1)) /\ D by PARTFUN1:def 2;
then dom DataPart JAt c= dom DataPart Comput(P+*I,s,m1) by RELAT_1:61;
then s3 | D = (DataPart Comput(P+*I,s,m1)) +* kk & DataPart JAt
c= DataPart Comput(P+*I,s,m1) by A2,FUNCT_4:71,GRFUNC_1:2;
then
A5: DataPart Comput(P+*I,s,m1) = DataPart s3 by FUNCT_4:98;
reconsider m = m1 + 1 + m3 as Element of NAT by ORDINAL1:def 12;
A6: Reloc(J,card I) c= I ";" J by SCMFSA6A:38;
take m;
set s4 = Comput(P,s,m1+1);
A7: Directed I c= I ";" J by SCMFSA6A:16;
A8: P+*I halts_on s by Th1,FUNCT_4:25;
then
A9: IC Comput(P,s,LifeSpan(P+*I,s) + 1) = card I by Th11,A7,A1,XBOOLE_1:1;
A10: P+*(I ";" J) = P by A1,FUNCT_4:98;
A11: DataPart Comput(P,s,m1) = DataPart s3
by A5,A10,Th14,A8;
A12: Comput(P,s,m1+1+m3) = Comput(P,Comput(P,s,m1+1),m3)by EXTPRO_1:4;
A13: DataPart Comput(P,s,m1+1) = DataPart s3
by A11,Th12,A7,A8,A1,XBOOLE_1:1;
A14: J c= P+*I+*J by FUNCT_4:25;
A15: Reloc(J,card I) c= P by A6,A1,XBOOLE_1:1;
A16: IncAddr(CurInstr(P+*I+*J,Comput(P+*I+*J,s3,m3)),card I)
= CurInstr(P,Comput(P,s4,m3)) by Th6,A14,A13,A9,A15;
dom P = NAT by PARTFUN1:def 2;
hence IC Comput(P,s,m) in dom P;
A17: J c= P+*I+*J by FUNCT_4:25;
P+*I+*J halts_on s3 by A17,AMISTD_1:def 11;
then CurInstr(P,Comput(P,s,m))
= IncAddr (halt SCM+FSA,card I) by A16,A12,EXTPRO_1:def 15
.= halt SCM+FSA by COMPOS_0:4;
hence CurInstr(P, Comput(P,s,m)) = halt SCM+FSA;
end;
end;
theorem Th15:
for s being 0-started State of SCM+FSA
for I being keeping_0 really-closed Program of SCM+FSA
st not P+* I halts_on s
for J being Program of SCM+FSA, k being Nat holds
Comput(P+*I,s,k) = Comput(P+*(I ";" J),s,k)
proof
let s be 0-started State of SCM+FSA;
let I be keeping_0 really-closed Program of SCM+FSA;
assume
A1: not P+*I halts_on s;
let J be Program of SCM+FSA;
defpred X[Nat] means Comput(P+*I,s,$1) = Comput(P+*(I ";" J),s,$1);
A2: for m st X[m] holds X[m+1]
proof
dom(I ";" J) = dom I \/ dom Reloc(J, card I) by SCMFSA6A:39;
then
A3: dom I c= dom(I ";" J) by XBOOLE_1:7;
let m;
A4: Comput(P+*I,s,m+1) = Following(P+*I,Comput(P+*I,s,m)) by EXTPRO_1:3
.= Exec(CurInstr(P+*I,Comput(P+*I,s,m)),
Comput(P+*I,s,m));
A5: Comput(P+*(I ";" J),s,m+1) =
Following(P+*(I ";" J),Comput(P+*(I ";" J),s,m))
by EXTPRO_1:3
.= Exec(CurInstr(P+*(I ";" J),
Comput(P+*(I ";" J),s,m)),Comput(P+*(I ";" J),s,m));
IC s = 0 by MEMSTR_0:def 11;
then
A6: IC s in dom I by AFINSQ_1:65;
A7: I c= P+*I by FUNCT_4:25;
then
A8: IC Comput(P+*I,s,m) in dom I by AMISTD_1:21,A6;
assume
A9: Comput(P+*I,s,m) = Comput(P+*(I ";" J),s,m);
dom(P+*I) = NAT by PARTFUN1:def 2;
then
A10: (P+*I)/.IC Comput(P+*I,s,m)
= (P+*I).IC Comput(P+*I,s,m) by PARTFUN1:def 6;
dom(P+*(I ";" J)) = NAT by PARTFUN1:def 2;
then
A11: (P+*(I ";" J))/.IC Comput(P+*(I ";" J),s,m)
= (P+*(I ";" J)).IC Comput(P+*(I ";" J),s,m) by PARTFUN1:def 6;
A12: I ";" J c= P +*(I ";" J) by FUNCT_4:25;
A13: CurInstr(P+*I,Comput(P+*I,s,m))
= I.IC( Comput(P+*I,s,m)) by A8,A10,A7,GRFUNC_1:2;
then I.IC( Comput(P+*I,s,m)) <> halt SCM+FSA by A1,EXTPRO_1:29;
then CurInstr(P+*I,Comput(P+*I,s,m))
= (I ";" J).IC( Comput(P+*I,s,m)) by A8,A13,SCMFSA6A:15
.= CurInstr(P+*(I ";" J),Comput(P+*(I ";" J),s,m))
by A9,A8,A3,A11,A12,GRFUNC_1:2;
hence thesis by A9,A4,A5;
end;
A14: X[0];
thus for k being Nat holds X[k] from NAT_1:sch 2(A14, A2 );
end;
theorem Th16:
for s being 0-started State of SCM+FSA
for I being keeping_0 really-closed Program of SCM+FSA st P+*I halts_on s
for J being really-closed Program of SCM+FSA st I ";" J c= P
for k being Element of NAT holds
IncIC(Comput(P+*I+*J, Initialize Result(P+*I,s),k),card I)
= Comput(P+*(I ";" J),s,(LifeSpan(P+*I,s)+1+k))
proof
let s be 0-started State of SCM+FSA;
let I be keeping_0 really-closed Program of SCM+FSA;
assume
A1: P+*I halts_on s;
let J be really-closed Program of SCM+FSA;
set RI = Result(P+*I,s);
set JSA0 = Start-At(0,SCM+FSA);
set RIJ = RI +* JSA0;
defpred X[Nat] means IncIC(Comput(P+*I+*J,RIJ,$1),card I)
= Comput(P+*(I ";" J),s,LifeSpan(P+*I,s)+1+$1);
assume
A2: I ";" J c= P;
then
A3: P +* (I ";" J) = P by FUNCT_4:98;
A4: for n being Nat st X[n] holds X[n+1]
proof
let k be Nat;
set k1 = k+1;
set CRk = Comput(P+*I+*J,RIJ,k);
set CRSk = IncIC(CRk,card I);
set CIJk = Comput(P+*(I ";" J),s,LifeSpan(P+*I,s)+1+k);
set CRk1 = Comput(P+*I+*J,RIJ,k1);
set CRSk1 = IncIC(CRk1, card I);
set CIJk1 = Comput(P+*(I ";" J),s,LifeSpan(P+*I,s)+1+k1);
assume
A5: IncIC(Comput(P+*I+*J,RIJ,k),card I)
= Comput(P+*(I ";" J),s,LifeSpan(P+*I,s)+1+k);
A6: IncAddr(CurInstr(P+*I+*J,CRk), card I) = CurInstr(P+*(I ";" J),CIJk)
proof
A7: I ";" J c= P+*(I ";" J) by FUNCT_4:25;
Reloc(J, card I) c= I ";" J by SCMFSA6A:38;
then
A8: Reloc(J, card I) c= P+*(I ";" J) by A7,XBOOLE_1:1;
A9: dom(P+*(I ";" J)) = NAT by PARTFUN1:def 2;
A10: CurInstr(P+*(I ";" J),CIJk) = (P+*(I ";" J)).IC CRSk
by A5,A9,PARTFUN1:def 6
.= (P+*(I ";" J)).(IC CRk + card I) by FUNCT_4:113;
reconsider ii = IC CRk as Element of NAT;
IC RIJ = 0 by MEMSTR_0:def 11;
then
A11: IC RIJ in dom J by AFINSQ_1:65;
J c= P+*I+*J by FUNCT_4:25;
then
A12: IC CRk in dom J by AMISTD_1:21,A11;
then
A13: IC CRk in dom IncAddr(J, card I) by COMPOS_1:def 21;
then
A14: Shift(IncAddr(J, card I), card I).(IC CRk + card I) = IncAddr(J,
card I).ii by VALUED_1:def 12
.= IncAddr(J/.ii, card I) by A12,COMPOS_1:def 21;
dom Shift(IncAddr(J, card I), card I) = { il+card I where il is
Nat: il in dom IncAddr(J, card I)} by VALUED_1:def 12;
then
A15: ii + card I in dom Shift(IncAddr(J, card I), card I) by A13;
A16: J c= P+*I+*J by FUNCT_4:25;
A17: J/.ii = J.ii by A12,PARTFUN1:def 6;
thus
IncAddr(CurInstr(P+*I+*J,CRk), card I)
= IncAddr((P+*I+*J).IC CRk,card I) by PBOOLE:143
.= Reloc(J,card I).(IC CRk + card I) by A14,A16,A17,A12,GRFUNC_1:2
.= CurInstr(P+*(I ";" J),CIJk) by A10,A8,A15,GRFUNC_1:2;
end;
A18: Exec(CurInstr(P+*(I ";" J),CIJk), CIJk)
= IncIC(Following(P+*I+*J,CRk),card I) by A6,A5,AMISTD_5:4;
CIJk1 =Comput(P+*(I ";" J),s,LifeSpan(P+*I,s)+1+k+1);
then
A19: CIJk1 = Following(P+*(I ";" J),CIJk) by EXTPRO_1:3;
A20: for a being Int-Location holds CRSk1.a = CIJk1.a
by A19,A18,EXTPRO_1:3;
A21: for f being FinSeq-Location holds CRSk1.f = CIJk1.f
by A19,A18,EXTPRO_1:3;
IC CRSk1 = IC CRk1 + card I by FUNCT_4:113
.= IC Following(P+*I+*J,CRk) + card I by EXTPRO_1:3;
then IC CRSk1 = IC CIJk1 by A19,A18,FUNCT_4:113;
hence thesis by A20,A21,SCMFSA_2:61;
end;
A22: Directed I c= I ";" J by SCMFSA6A:16;
A23: now
set s2 = Comput(P+*(I ";" J),s,LifeSpan(P+*I,s)+1+0);
set s1 = IncIC(RIJ,card I);
thus IC s1 = IC RIJ + card I by FUNCT_4:113
.= 0+card I by FUNCT_4:113
.= IC s2 by A1,A22,Th11,A3,A2,XBOOLE_1:1;
A24: DataPart Comput(P,s,LifeSpan(P+*I,s)) =
DataPart Comput(P,s,LifeSpan(P+*I,s)+1)
by A1,A22,Th12,A2,XBOOLE_1:1;
set o = LifeSpan(P+*I,s);
hereby
let a be Int-Location;
A25: not a in dom JSA0 by SCMFSA_2:102;
not a in dom Start-At (IC RIJ + card I,SCM+FSA) by SCMFSA_2:102;
hence s1.a = RIJ.a by FUNCT_4:11
.= RI.a by A25,FUNCT_4:11
.= Comput(P+*I,s,LifeSpan(P+*I,s)).a by A1,EXTPRO_1:23
.= Comput(P+*(I ";" J),s,LifeSpan(P+*I,s)).a by Th14,A1
.= s2.a by A24,A3,SCMFSA_M:2;
end;
let f be FinSeq-Location;
A26: not f in dom JSA0 by SCMFSA_2:103;
not f in dom Start-At (IC RIJ + card I,SCM+FSA) by SCMFSA_2:103;
hence s1.f = RIJ.f by FUNCT_4:11
.= RI.f by A26,FUNCT_4:11
.= Comput(P+*I,s,LifeSpan(P+*I,s)).f by A1,EXTPRO_1:23
.= Comput(P+*(I ";" J),s,LifeSpan(P+*I,s)).f by Th14,A1
.= s2.f by A24,A3,SCMFSA_M:2;
end;
A27: X[0] by A23,SCMFSA_2:61;
for k being Nat holds X[k] from NAT_1:sch 2(A27, A4);
hence thesis;
end;
registration
let I, J be keeping_0 really-closed Program of SCM+FSA;
cluster I ";" J -> keeping_0;
coherence
proof
let s be 0-started State of SCM+FSA;
let P such that
A1: I ";" J c= P;
A2: I c= P+*I by FUNCT_4:25;
A3: P = P +* (I ";" J) by A1,FUNCT_4:98;
per cases;
suppose
A4: P+*I halts_on s;
let k be Nat;
hereby
per cases;
suppose
A5: k <= LifeSpan(P+*I,s);
Comput(P+*I,s,k).intloc 0 = s.intloc 0 by Def2,A2;
hence thesis by A3,Th14,A4,A5;
end;
suppose
A6: k > LifeSpan(P+*I,s);
set LS = LifeSpan(P+*I,s);
consider p being Element of NAT such that
A7: k = LS + p and
A8: 1 <= p by A6,FINSEQ_4:84;
consider r being Nat such that
A9: p = 1 + r by A8,NAT_1:10;
dom SA0 = {IC SCM+FSA} & intloc 0 <> IC SCM+FSA by FUNCOP_1:13
,SCMFSA_2:56;
then
A10: not intloc 0 in dom Start-At(0,SCM+FSA) by TARSKI:def 1;
reconsider r as Element of NAT by ORDINAL1:def 12;
dom Start-At (IC ((Comput(P+*I+*J,
Initialize Result(P+*I,s),r)))
+ card I,SCM+FSA) = {IC SCM+FSA} & intloc 0 <> IC SCM+FSA
by FUNCOP_1:13,SCMFSA_2:56;
then
A11: not intloc 0 in dom Start-At (IC ((Comput(P+*I+*J,
Initialize Result(P+*I,s),r))) + card I,SCM+FSA) by TARSKI:def 1;
A12: IncIC(Comput(P+*I+*J,Initialize Result(P+*I,s),r),card I)
= Comput(P+*(I ";" J),s,(LS+1+r)) by A4,Th16,A1;
A13: J c= P+*I+*J by FUNCT_4:25;
Comput(P+*I+*J,Initialize Result(P+*I,s),r). intloc 0
= (Initialize Result(P+*I,s)).intloc 0 by Def2,A13
.= (Result(P+*I,s)).intloc 0 by A10,FUNCT_4:11
.= Comput(P+*I,s,(LifeSpan(P+*I,s))).intloc 0 by A4,EXTPRO_1:23
.= s.intloc 0 by Def2,A2;
hence thesis by A7,A9,A12,A3,A11,FUNCT_4:11;
end;
end;
end;
suppose
A14: not P+*I halts_on s;
let k be Nat;
Comput(P+*I,s,k).intloc 0 = s.intloc 0 by Def2,A2;
hence thesis by A3,A14,Th15;
end;
end;
end;
theorem Th17:
for I being keeping_0 parahalting really-closed Program of SCM+FSA,
J being parahalting really-closed Program of SCM+FSA holds
LifeSpan(P+*(I ";" J),s +* Initialize((intloc 0).-->1)) =
LifeSpan(P+*I,s +* Initialize((intloc 0).-->1)) + 1 + LifeSpan(P+*I+*J,
Result(P+*I,s +* Initialize((intloc 0).-->1)) +*
Initialize((intloc 0).-->1))
proof
let I be keeping_0 parahalting really-closed Program of SCM+FSA;
let J be parahalting really-closed Program of SCM+FSA;
A1: I ";" J c= P +* (I ";" J) by FUNCT_4:25;
Initialize((intloc 0).-->1) c= s +* Initialize((intloc 0).-->1) by FUNCT_4:25;
then
A2: LifeSpan(P+*(I ";" J),s +* Initialize((intloc 0).-->1)) =
LifeSpan(P+*(I ";" J)+*I,s +* Initialize((intloc 0).-->1)) + 1 +
LifeSpan(P+*(I ";" J)+*I +* J,
Result(P+*(I ";" J)+*I,
s +* Initialize((intloc 0).-->1)) +* Initialize((intloc 0).-->1))
by Lm2,A1;
A3: J c= P+*(I ";" J) +* I +* J by FUNCT_4:25;
A4: J c= P+*I+*J by FUNCT_4:25;
A5: I c= P +* (I ";" J) +* I by FUNCT_4:25;
A6: I c= P+* I by FUNCT_4:25;
A7: (Result(P+*(I ";" J)+*I,s +* Initialize((intloc 0).-->1))
+* Initialize((intloc 0).-->1))
= (Result(P+*I,s +* Initialize((intloc 0).-->1))
+* Initialize((intloc 0).-->1)) by Th8,A5,A6;
A8: LifeSpan(P+*I,s +* Initialize((intloc 0).-->1)) =
LifeSpan(P+*(I ";" J)+*I,s +* Initialize((intloc 0).-->1))
by Th8,A5,A6;
thus thesis by A7,Th8,A3,A4,A2,A8;
end;
theorem
for I being keeping_0 parahalting really-closed Program of SCM+FSA,
J being parahalting really-closed Program of SCM+FSA
holds IExec(I ";" J,P,s) = IncIC(IExec(J,P,IExec(I,P,s)),card I)
proof
set D = (Int-Locations \/ FinSeq-Locations);
set A = NAT;
let I be keeping_0 parahalting really-closed Program of SCM+FSA;
let J be parahalting really-closed Program of SCM+FSA;
set s1 = s +* Initialize((intloc 0).-->1),
P1 = P +* I;
A1: I c= P+*I by FUNCT_4:25;
set s2 = s +* Initialize((intloc 0).-->1),
P2 = P +* (I ";" J);
set s3 = Comput(P1,s1,LifeSpan(P1,s1)) +* Initialize((intloc 0).-->1),
P3 = P1 +* J;
set m1 = LifeSpan(P1,s1);
set m3 = LifeSpan(P3,s3);
A2:Initialize((intloc 0).-->1) c= s2 by FUNCT_4:25;
A3: I c= P2 +* I by FUNCT_4:25;
A4: I ";" J c= P+*(I ";" J) by FUNCT_4:25;
A5: LifeSpan(P2 +* I,s2) = m1 by Th8,A1,A3;
A6: Reloc(J,card I) c= P+*(I ";" J) by A2,Lm2,A4;
A7: I c= P1 by FUNCT_4:25;
A8: Initialize((intloc 0).-->1) c= s1 by FUNCT_4:25;
A9: s3 = Result(P1,s1) +* Initialize((intloc 0).-->1)
by Th2,A7,A8,EXTPRO_1:23;
A10: P+*(I ";" J)+*I+*(I ";" J)
= P+*(I ";" J)+*(I+*(I ";" J)) by FUNCT_4:14
.= P+*((I ";" J)+*(I+*(I ";" J))) by FUNCT_4:14
.= P +* ((I ";" J) +* (I ";" J)) by SCMFSA6A:18;
A11: P+*I+*(I ";" J)
= P +* (I +* (I ";" J)) by FUNCT_4:14
.= P +* ((I ";" J) +* (I ";" J)) by SCMFSA6A:18;
A12: P+*(I ";" J)+*I halts_on s2 by Th1,FUNCT_4:25;
DataPart Comput(P+*(I ";" J)+*I,s2,m1)
= DataPart Comput(P +* ((I ";" J) +* (I ";" J)),
s +* Initialize((intloc 0).-->1),m1) by A10,A12,Th10,A5,FUNCT_4:25
.= DataPart Comput(P+*I,s1,m1) by A11,A7,A8,Th10,Th2;
then
A13: DataPart( Comput(P2+*I,s2,m1)+* Initialize((intloc 0).-->1))
= DataPart Comput(P1,s1,m1) +* DataPart Initialize((intloc 0).-->1)
by FUNCT_4:71
.= DataPart s3 by FUNCT_4:71;
A14: J c= P+*I+*J by FUNCT_4:25;
A15: IC Comput(P2,s2,m1+1) = card I
by A2,A5,Lm2,A4;
A16: DataPart Comput(P2,s2,m1+1) = DataPart s3 by A13,A2,A5,Lm2,A4;
then
A17: DataPart Comput(P+*(I ";" J),Comput(P+*(I ";" J),s2,m1+1),m3)
= DataPart Comput(P+*I+*J,s3,m3 ) by Th6,A14,A6,A15;
A18: IC Comput(P+*(I ";" J),Comput(P+*(I ";" J),s2,m1+1),m3)
= IC Comput(P+*I+*J,s3,m3) + card I by A15,Th6,A6,A14,A16;
A19: J c= P3 by FUNCT_4:25;
A20: Initialize((intloc 0).-->1) c= s3 by FUNCT_4:25;
A21: J c= P1 +* J by FUNCT_4:25;
A22: J c= P+*J by FUNCT_4:25;
A23: Result(P +* J,IExec(I,P,s) +* Initialize((intloc 0).-->1))
= Result(P3,s3) by Th8,A22,A19,A9;
A24: I ";" J c= P2 by FUNCT_4:25;
then
IExec(I ";" J,P,s) = Comput(P2,s2,LifeSpan(P2,s2))
by A2,Th2,EXTPRO_1:23
.= Comput(P2,s2,m1+1+m3) by A9,Th17;
then
A25: DataPart IExec(I ";" J,P,s)
= DataPart Comput(P3,s3,m3) by A17,EXTPRO_1:4
.= DataPart IExec(J,P,IExec(I,P,s)) by A20,A23,Th2,A19,EXTPRO_1:23;
A26: IC IExec(I ";" J,P,s)
= IC Comput(P2,s2,LifeSpan(P2,s2)) by A24,A2,Th2,EXTPRO_1:23
.= IC Comput(P2,s2,m1+1+m3) by A9,Th17
.= IC Comput(P3,s3,m3) + card I by A18,EXTPRO_1:4
.= IC Result(P3,s3) + card I by A20,Th2,A19,EXTPRO_1:23
.= IC Result(P1 +* J,
Result(P1,s1) +* Initialize((intloc 0).-->1)) + card I
by A8,Th2,A7,EXTPRO_1:23
.= IC IExec(J,P,IExec(I,P,s)) + card I by A21,A22,Th8;
hereby
reconsider l = IC IExec(J,P,IExec(I,P,s)) + card I as Element of NAT;
A27: dom Start-At(l,SCM+FSA) = {IC SCM+FSA} by FUNCOP_1:13;
A28: now
let x be object;
assume
A29: x in dom IExec(I ";" J,P,s);
per cases by A29,SCMFSA_M:1;
suppose
A30: x is Int-Location;
then x <> IC SCM+FSA by SCMFSA_2:56;
then
A31: not x in dom Start-At(l,SCM+FSA) by A27,TARSKI:def 1;
IExec(I ";" J,P,s).x = IExec(J,P,IExec(I,P,s)).x
by A25,A30,SCMFSA_M:2;
hence
IExec(I ";" J,P,s).x = (IExec(J,P,IExec(I,P,s))
+* Start-At (IC IExec(J,P,
IExec(I,P,s)) + card I,SCM+FSA)).x by A31,FUNCT_4:11;
end;
suppose
A32: x is FinSeq-Location;
then x <> IC SCM+FSA by SCMFSA_2:57;
then
A33: not x in dom Start-At(l,SCM+FSA) by A27,TARSKI:def 1;
IExec(I ";" J,P,s).x = IExec(J,P,IExec(I,P,s)).x
by A25,A32,SCMFSA_M:2;
hence
IExec(I ";" J,P,s).x = (IExec(J,P,IExec(I,P,s)) +*
Start-At (IC IExec(J,P,
IExec(I,P,s)) + card I,SCM+FSA)).x by A33,FUNCT_4:11;
end;
suppose
A34: x = IC SCM+FSA;
then x in {IC SCM+FSA} by TARSKI:def 1;
then
A35: x in dom Start-At(l,SCM+FSA) by FUNCOP_1:13;
thus IExec(I ";" J,P,s).x = (Start-At(l,SCM+FSA)).IC SCM+FSA
by A26,A34,FUNCOP_1:72
.= (IExec(J,P,IExec(I,P,s)) +*
Start-At (IC IExec(J,P,IExec(I,P,s)) + card
I,SCM+FSA)).x by A34,A35,FUNCT_4:13;
end;
end;
dom IExec(I ";" J,P,s) = the carrier of SCM+FSA by PARTFUN1:def 2
.= dom (IExec(J,P,IExec(I,P,s))
+* Start-At (IC IExec(J,P,IExec(I,P,s)) + card
I,SCM+FSA)) by PARTFUN1:def 2;
hence thesis by A28,FUNCT_1:2;
end;
end;
theorem
for P being Instruction-Sequence of SCM+FSA
holds not P +*(IC s, goto IC s) halts_on s by Lm1;