:: The { \bf while } macro instructions of SCM+FSA, Part { II }
:: by Piotr Rudnicki
::
:: Received June 3, 1998
:: Copyright (c) 1998-2018 Association of Mizar Users
:: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland).
:: This code can be distributed under the GNU General Public Licence
:: version 3.0 or later, or the Creative Commons Attribution-ShareAlike
:: License version 3.0 or later, subject to the binding interpretation
:: detailed in file COPYING.interpretation.
:: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these
:: licenses, or see http://www.gnu.org/licenses/gpl.html and
:: http://creativecommons.org/licenses/by-sa/3.0/.
environ
vocabularies NUMBERS, SUBSET_1, INT_1, AMI_1, SCMFSA_2, SF_MASTR, FUNCOP_1,
FUNCT_1, CARD_3, RELAT_1, TARSKI, AMISTD_2, XBOOLE_0, CARD_1, SCMFSA8A,
AMI_3, FSM_1, SCMFSA7B, SCMFSA8B, ARYTM_3, SCMFSA6A, ARYTM_1, FUNCT_4,
SCMFSA_9, SCMFSA6B, XXREAL_0, CIRCUIT2, GRAPHSP, NAT_1, SCMFSA6C,
MSUALG_1, SFMASTR1, PRE_FF, COMPLEX1, ABIAN, SCMFSA9A, PARTFUN1,
EXTPRO_1, COMPOS_1, MEMSTR_0, SCMFSA_7, SCMFSA8C, SFMASTR2, AMISTD_1,
TURING_1;
notations TARSKI, XBOOLE_0, SUBSET_1, CARD_1, ORDINAL1, NUMBERS, XCMPLX_0,
FINSUB_1, FUNCOP_1, INT_1, ABIAN, RELAT_1, FUNCT_1, PARTFUN1, FUNCT_2,
PRE_FF, CARD_3, FUNCT_4, FUNCT_7, PBOOLE, VALUED_1, INT_2, XXREAL_0,
NAT_1, NAT_D, MEMSTR_0, COMPOS_0, COMPOS_1, COMPOS_2, EXTPRO_1, AMISTD_1,
AMISTD_2, SCMFSA_2, SCMFSA6A, SCMFSA6B, SF_MASTR, SCMFSA6C, SCMFSA_7,
SCMFSA7B, SCMFSA8A, SCMFSA8B, SCMFSA_9, SFMASTR1, SCMFSA8C, SCMFSA_M,
SCMFSA_X;
constructors NAT_D, PRE_FF, ABIAN, SCMFSA_7, SCMFSA6A, SCMFSA6B, MEMSTR_0,
SCMFSA6C, SCMFSA8A, SCMFSA8B, SCMFSA_9, SFMASTR1, AMISTD_2, RELSET_1,
PRE_POLY, XXREAL_2, PBOOLE, SCMFSA7B, SCMFSA8C, FUNCT_4, AMISTD_1, AMI_3,
SCMFSA_M, SF_MASTR, SCMFSA_X, DOMAIN_1, COMPOS_2;
registrations XBOOLE_0, FUNCT_1, ORDINAL1, RELSET_1, FINSET_1, FINSUB_1,
XXREAL_0, XREAL_0, NAT_1, INT_1, CARD_3, ABIAN, SCMFSA_2, SCMFSA6B,
SCMFSA6C, SCMFSA7B, SCMFSA8A, SCMFSA8B, SCMFSA_9, SFMASTR1, VALUED_1,
AFINSQ_1, FUNCT_4, FUNCOP_1, COMPOS_1, EXTPRO_1, STRUCT_0, MEMSTR_0,
AMI_3, COMPOS_0, SCMFSA_M, SCMFSA8C, SCMFSA6A, SCMFSA10, SCMFSA_X,
COMPOS_2;
requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM;
definitions MEMSTR_0;
equalities FUNCOP_1, SCMFSA6A, AFINSQ_1, COMPOS_1, EXTPRO_1, MEMSTR_0,
SCMFSA_M, SF_MASTR, CARD_1, SCMFSA_X, SCMFSA8B, SCMFSA8C, COMPOS_2;
expansions EXTPRO_1, MEMSTR_0;
theorems TARSKI, ABSVALUE, NAT_1, INT_1, NAT_2, FUNCT_1, GRFUNC_1, FUNCOP_1,
FUNCT_4, PRE_FF, ABIAN, SCMFSA_2, MEMSTR_0, SCMFSA_4, SCMFSA6A, SCMFSA6B,
SF_MASTR, SCMFSA6C, SCMFSA7B, SCMFSA8A, SCMFSA8B, SCMFSA8C, SCMFSA_9,
SFMASTR1, RELAT_1, XBOOLE_1, CARD_3, XREAL_1, XXREAL_0, ORDINAL1, NAT_D,
PBOOLE, PARTFUN1, FINSEQ_4, COMPOS_1, EXTPRO_1, SCMFSA_M, AFINSQ_1,
SCMFSA_X, ZFMISC_1, COMPOS_2;
schemes FUNCT_2, NAT_1, SUBSET_1;
begin :: SCM+FSA preliminaries
reserve p,p1,p2,h for Instruction-Sequence of SCM+FSA;
reserve k, l, n for Nat,
j for Integer,
i,i1 for Instruction of SCM+FSA;
theorem Th1: :: singleUsed
UsedILoc(l .--> i) = UsedIntLoc i
proof rng(l .--> i) = {i} by FUNCOP_1:8;
hence UsedILoc(l .--> i) = union { UsedIntLoc i1 : i1 in {i} }
.= UsedIntLoc i from SUBSET_1:sch 5;
end;
theorem Th2: :: singleUsedF:
UsedI*Loc (l .--> i) = UsedInt*Loc i
proof rng(l .--> i) = {i} by FUNCOP_1:8;
hence UsedI*Loc(l .--> i) = union { UsedInt*Loc i1 : i1 in {i} }
.= UsedInt*Loc i from SUBSET_1:sch 5;
end;
theorem Th3: :: StopUsed:
UsedILoc Stop SCM+FSA = {} by Th1,SF_MASTR:13;
theorem Th4: :: StopUsedF:
UsedI*Loc Stop SCM+FSA = {}
proof
thus UsedI*Loc Stop SCM+FSA
= UsedInt*Loc halt SCM+FSA by Th2
.= {} by SF_MASTR:32;
end;
theorem Th5: :: GotoUsed:
UsedILoc Goto l = {}
proof
Goto l = Load goto l by SCMFSA8A:def 1;
hence UsedILoc Goto l = UsedIntLoc goto l by Th1
.= {} by SF_MASTR:15;
end;
theorem Th6: :: GotoUsedF:
UsedI*Loc Goto l = {}
proof
Goto l = Load goto l by SCMFSA8A:def 1;
hence UsedI*Loc Goto l = UsedInt*Loc goto l by Th2
.= {} by SF_MASTR:32;
end;
reserve s, s1, s2 for State of SCM+FSA,
a for read-write Int-Location,
b for Int-Location,
I, J for MacroInstruction of SCM+FSA,
Ig for good MacroInstruction of SCM+FSA,
i, j, k, m, n for Nat;
set D = Int-Locations \/ FinSeq-Locations;
set SAt = Start-At(0,SCM+FSA);
theorem
UsedILoc if=0(b, I, J) = {b} \/ UsedILoc I \/ UsedILoc J
proof
set I5 = Stop SCM+FSA;
set a = b;
set I1 = a =0_goto (card J + 3);
set I3 = Goto (card I + 1);
thus UsedILoc if=0(a, I, J) = UsedILoc (I1 ";" J ";" I3 ";" I ";" I5)
.= (UsedILoc (I1 ";" J ";" I3 ";" I)) \/ {} by Th3,SF_MASTR:27
.= (UsedILoc (I1 ";" J ";" I3)) \/ UsedILoc I by SF_MASTR:27
.= (UsedILoc (I1 ";" J)) \/ UsedILoc I3 \/ UsedILoc I by SF_MASTR:27
.= (UsedILoc (I1 ";" J)) \/ {} \/ UsedILoc I by Th5
.= UsedIntLoc I1 \/ UsedILoc J \/ UsedILoc I by SF_MASTR:29
.= {a} \/ UsedILoc J \/ UsedILoc I by SF_MASTR:16
.= {a} \/ UsedILoc I \/ UsedILoc J by XBOOLE_1:4;
end;
theorem :: eifUsedF:
for a being Int-Location holds UsedI*Loc if=0(a, I, J) =
UsedI*Loc I \/ UsedI*Loc J
proof
set I5 = Stop SCM+FSA;
let a be Int-Location;
set I1 = a =0_goto (card J + 3);
set I3 = Goto (card I + 1);
thus UsedI*Loc if=0(a, I, J) = UsedI*Loc (I1 ";" J ";" I3 ";" I ";" I5)
.= (UsedI*Loc (I1 ";" J ";" I3 ";" I)) \/ {} by Th4,SF_MASTR:43
.= (UsedI*Loc (I1 ";" J ";" I3)) \/ UsedI*Loc I by SF_MASTR:43
.= (UsedI*Loc (I1 ";" J)) \/ UsedI*Loc I3 \/ UsedI*Loc I by SF_MASTR:43
.= (UsedI*Loc (I1 ";" J)) \/ {} \/ UsedI*Loc I by Th6
.= UsedInt*Loc I1 \/ UsedI*Loc J \/ UsedI*Loc I by SF_MASTR:45
.= {} \/ UsedI*Loc J \/ UsedI*Loc I by SF_MASTR:32
.= UsedI*Loc I \/ UsedI*Loc J;
end;
theorem :: ifUsed:
UsedILoc if>0(b, I, J) = {b} \/ UsedILoc I \/ UsedILoc J
proof
set I5 = Stop SCM+FSA;
set a = b;
set I1 = a >0_goto (card J + 3);
set I3 = Goto (card I + 1);
thus UsedILoc if>0(a, I, J) = UsedILoc (I1 ";" J ";" I3 ";" I ";" I5)
.= (UsedILoc (I1 ";" J ";" I3 ";" I)) \/ {} by Th3,SF_MASTR:27
.= (UsedILoc (I1 ";" J ";" I3)) \/ UsedILoc I by SF_MASTR:27
.= (UsedILoc (I1 ";" J)) \/ UsedILoc I3 \/ UsedILoc I by SF_MASTR:27
.= (UsedILoc (I1 ";" J)) \/ {} \/ UsedILoc I by Th5
.= UsedIntLoc I1 \/ UsedILoc J \/ UsedILoc I by SF_MASTR:29
.= {a} \/ UsedILoc J \/ UsedILoc I by SF_MASTR:16
.= {a} \/ UsedILoc I \/ UsedILoc J by XBOOLE_1:4;
end;
theorem :: ifUsedF:
UsedI*Loc if>0(b, I, J) = UsedI*Loc I \/ UsedI*Loc J
proof
set I5 = Stop SCM+FSA;
set a = b;
set I1 = a >0_goto (card J + 3);
set I3 = Goto (card I + 1);
thus UsedI*Loc if>0(a, I, J) = UsedI*Loc (I1 ";" J ";" I3 ";" I ";" I5)
.= (UsedI*Loc (I1 ";" J ";" I3 ";" I)) \/ {} by Th4,SF_MASTR:43
.= (UsedI*Loc (I1 ";" J ";" I3)) \/ UsedI*Loc I by SF_MASTR:43
.= (UsedI*Loc (I1 ";" J)) \/ UsedI*Loc I3 \/ UsedI*Loc I by SF_MASTR:43
.= (UsedI*Loc (I1 ";" J)) \/ {} \/ UsedI*Loc I by Th6
.= UsedInt*Loc I1 \/ UsedI*Loc J \/ UsedI*Loc I by SF_MASTR:45
.= {} \/ UsedI*Loc J \/ UsedI*Loc I by SF_MASTR:32
.= UsedI*Loc I \/ UsedI*Loc J;
end;
begin :: while=0, general
Lm1:
for a being Int-Location, I being MacroInstruction of SCM+FSA
holds
if=0(a,I ';' goto 0).(card(I ';' goto 0) + 1)
= goto (card(I ';' goto 0) + 1)
proof
let a be Int-Location;
let I be MacroInstruction of SCM+FSA;
set I1= I ';' goto 0;
set i = a =0_goto 3;
set c4 = card I1 + 1;
set Mi= Macro i ";" Goto (card I1 + 1) ";" I;
A1: card Mi = card(i ";" Goto (card I1 + 1) ";" I)
.= card(i ";" Goto (card I1 + 1)) + card I by SCMFSA6A:21
.= card Goto (card I1 + 1) + 2 + card I by SCMFSA6A:33
.= 1 + 2 + card I by SCMFSA8A:15
.= card I + 3;
A2: c4 + 0 = card I + 1 + 1 by COMPOS_2:11
.= card I + 3 - 1
.= LastLoc Mi by AFINSQ_1:91,A1;
then
A3: c4 = card Mi -' 1 by AFINSQ_1:70;
LastLoc(Mi ';' goto 0) = LastLoc Mi + LastLoc Macro goto 0 by COMPOS_2:43
.= LastLoc Mi + 1 by COMPOS_2:30;
then
A4: c4 < LastLoc(Mi ';' goto 0) by A2,NAT_1:13;
A5: 0 in dom Macro goto 0 by AFINSQ_1:65;
then
A6: (Macro goto 0)/.0 = (Macro goto 0).0 by PARTFUN1:def 6
.= goto 0 by COMPOS_1:58;
thus if=0(a,I1).c4
= ((a =0_goto 3 ";" Goto(card I1 + 1)) ";" I ';' goto 0
";" Stop SCM+FSA).c4
by SCMFSA_X:35
.= (a =0_goto 3 ";" Goto(card I1 + 1) ";" I ';' goto 0).c4
by A4,SCMFSA6A:41
.= IncAddr(Macro goto 0, card Mi -' 1).0 by A2,COMPOS_1:23
.= IncAddr((Macro goto 0)/.0, card Mi -' 1) by A5,COMPOS_1:def 21
.= IncAddr( goto 0, c4 ) by A6,A3
.= goto (( 0)+c4) by SCMFSA_4:1
.= goto c4;
end;
Lm2:
for a being Int-Location, I being MacroInstruction of SCM+FSA holds
if>0(a,I ';' goto 0).(card(I ';' goto 0) + 1)
= goto (card(I ';' goto 0) + 1)
proof
let a be Int-Location;
let I be MacroInstruction of SCM+FSA;
set I1= I ';' goto 0;
set i = a >0_goto 3;
set c4 = card I1 + 1;
set Mi= Macro i ";" Goto (card I1 + 1) ";" I;
A1: card Mi = card(i ";" Goto (card I1 + 1) ";" I)
.= card(i ";" Goto (card I1 + 1)) + card I by SCMFSA6A:21
.= card Goto (card I1 + 1) + 2 + card I by SCMFSA6A:33
.= 1 + 2 + card I by SCMFSA8A:15
.= card I + 3;
A2: c4 + 0 = card I + 1 + 1 by COMPOS_2:11
.= card I + 3 - 1
.= LastLoc Mi by AFINSQ_1:91,A1;
then
A3: c4 = card Mi -' 1 by AFINSQ_1:70;
LastLoc(Mi ';' goto 0) = LastLoc Mi + LastLoc Macro goto 0 by COMPOS_2:43
.= LastLoc Mi + 1 by COMPOS_2:30;
then
A4: c4 < LastLoc(Mi ';' goto 0) by A2,NAT_1:13;
A5: 0 in dom Macro goto 0 by AFINSQ_1:65;
then
A6: (Macro goto 0)/.0 = (Macro goto 0).0 by PARTFUN1:def 6
.= goto 0 by COMPOS_1:58;
thus if>0(a,I1).c4
= ((a >0_goto 3 ";" Goto(card I1 + 1)) ";" I ';' goto 0
";" Stop SCM+FSA).c4
by SCMFSA_X:36
.= (a >0_goto 3 ";" Goto(card I1 + 1) ";" I ';' goto 0).c4
by A4,SCMFSA6A:41
.= IncAddr(Macro goto 0, card Mi -' 1).0 by A2,COMPOS_1:23
.= IncAddr((Macro goto 0)/.0, card Mi -' 1) by A5,COMPOS_1:def 21
.= IncAddr( goto 0, c4 ) by A6,A3
.= goto (( 0)+c4) by SCMFSA_4:1
.= goto c4;
end;
Lm3:
for a being Int-Location, I being MacroInstruction of SCM+FSA
holds UsedILoc if=0(a,I ';' goto 0) =
UsedILoc (if=0(a,I ';' goto 0) +* (card I + 2,goto 0))
proof
let a be Int-Location;
let I be MacroInstruction of SCM+FSA;
set I1 = I ';' goto 0;
set Lc4 = card I + 2;
set if0 = if=0(a,I1);
A1: Lc4 = card I +1+1
.= card I1 + 1 by COMPOS_2:11;
A2: card if=0(a,I1) = card I1 + 4 by SCMFSA_X:1;
Lc4 < card I1 + 4 by XREAL_1:6,A1;
then
A3: Lc4 in dom if=0(a,I1) by A2,AFINSQ_1:66;
A4: if0.Lc4 in rng if0 by A3,FUNCT_1:3;
rng if0 c= the InstructionsF of SCM+FSA by RELAT_1:def 19;
then reconsider pc = if0.Lc4 as Instruction of SCM+FSA by A4;
UsedIntLoc pc = UsedIntLoc goto(0+Lc4) by Lm1,A1
.= {} by SF_MASTR:15
.= UsedIntLoc goto 0 by SF_MASTR:15;
hence UsedILoc if0 = UsedILoc(if0+*(Lc4,goto 0)) by SCMFSA_9:49;
end;
Lm4: for a being Int-Location, I being MacroInstruction of SCM+FSA
holds UsedI*Loc if=0(a,I ';' goto 0)
= UsedI*Loc(if=0(a,I ';' goto 0) +* (card I +2,goto 0))
proof
let a be Int-Location;
let I be MacroInstruction of SCM+FSA;
set Lc4 = card I + 2;
set IG = I ';' goto 0;
set if0 = if=0(a,IG);
A1: Lc4 = card I +1+1
.= card IG + 1 by COMPOS_2:11;
A2: card if=0(a,IG) = card IG + 4 by SCMFSA_X:1 ;
Lc4 < card IG + 4 by XREAL_1:6,A1;
then
A3: Lc4 in dom if=0(a,IG) by A2,AFINSQ_1:66;
A4: if0.Lc4 in rng if0 by A3,FUNCT_1:3;
rng if0 c= the InstructionsF of SCM+FSA by RELAT_1:def 19;
then reconsider pc = if0.Lc4 as Instruction of SCM+FSA by A4;
UsedInt*Loc pc = UsedInt*Loc goto(0+Lc4) by Lm1,A1
.= {} by SF_MASTR:32
.= UsedInt*Loc goto 0 by SF_MASTR:32;
hence UsedI*Loc if0 = UsedI*Loc(if0+*(Lc4,goto 0)) by SCMFSA_9:50;
end;
theorem :: ewhileUsed:
UsedILoc while=0(b, I) = {b} \/ UsedILoc I
proof
set J = Stop SCM+FSA;
set a = b;
set IG = I ';' goto 0;
A1: UsedILoc(I ';' goto 0) = UsedILoc I by SF_MASTR:66;
thus UsedILoc while=0(a, I) = (UsedILoc if=0(a, IG)) by Lm3
.= UsedILoc (a =0_goto 3 ";"
Goto (card IG + 1) ";" (I ';' goto 0)) \/ {} by Th3,SF_MASTR:27
.= UsedILoc (a =0_goto 3 ";"
Goto (card IG + 1)) \/ UsedILoc I by A1,SF_MASTR:27
.= UsedIntLoc (a =0_goto 3) \/
UsedILoc Goto (card IG + 1) \/ UsedILoc I by SF_MASTR:29
.= UsedIntLoc (a =0_goto 3) \/ {} \/ UsedILoc I by Th5
.= {a} \/ UsedILoc I by SF_MASTR:16;
end;
theorem :: ewhileUsedF:
UsedI*Loc while=0(b, I) = UsedI*Loc I
proof
set J = Stop SCM+FSA;
set a = b;
set IG = I ';' goto 0;
A1: UsedI*Loc(I ';' goto 0) = UsedI*Loc I by SF_MASTR:67;
thus UsedI*Loc while=0(a, I) = (UsedI*Loc if=0(a, IG)) by Lm4
.= UsedI*Loc (a =0_goto 3 ";"
Goto (card IG + 1) ";" (I ';' goto 0)) \/ {} by Th4,SF_MASTR:43
.= UsedI*Loc (a =0_goto 3 ";"
Goto (card IG + 1)) \/ UsedI*Loc I by A1,SF_MASTR:43
.= UsedInt*Loc (a =0_goto 3) \/
UsedI*Loc Goto (card IG + 1) \/ UsedI*Loc I by SF_MASTR:45
.= UsedInt*Loc (a =0_goto 3 ) \/ {} \/ UsedI*Loc I by Th6
.= {} \/ UsedI*Loc I by SF_MASTR:32
.= UsedI*Loc I;
end;
definition let p;
let s be State of SCM+FSA, a be read-write Int-Location,
I be MacroInstruction of SCM+FSA;
pred ProperBodyWhile=0 a, I, s, p means
for k being Nat st StepWhile=0(a,I,p,s).k.a = 0 holds
I is_halting_on StepWhile=0(a,I,p,s).k, p+*while=0(a,I);
pred WithVariantWhile=0 a, I, s, p means
ex f being Function of product the_Values_of SCM+FSA, NAT
st for k being Nat
holds f.(StepWhile=0(a,I,p,s).(k+1)) < f.(StepWhile=0(a,I,p,s).k)
or StepWhile=0(a,I,p,s).k.a <> 0;
end;
theorem Th13: :: eParaProper:
for I being parahalting MacroInstruction of SCM+FSA holds
ProperBodyWhile=0 a,I,s,p by SCMFSA7B:19;
theorem Th14: :: SCMFSA_9:24, corrected
for I being really-closed MacroInstruction of SCM+FSA holds
ProperBodyWhile=0 a,I,s,p & WithVariantWhile=0 a,I,s,p implies
while=0(a,I) is_halting_on s,p
proof let I be really-closed MacroInstruction of SCM+FSA;
assume
A1: for k being Nat st StepWhile=0(a,I,p,s).k.a = 0 holds
I is_halting_on StepWhile=0(a,I,p,s).k, p+*while=0(a,I);
set s1 = Initialize s,
p1 = p +* while=0(a,I);
defpred S[Nat] means StepWhile=0(a,I,p,s).$1.a <> 0;
given f being Function of product the_Values_of SCM+FSA,NAT such that
A2: for k being Nat
holds (f.(StepWhile=0(a,I,p,s).(k+1)) < f.(StepWhile=0(a,I,p,s).k)
or (StepWhile=0(a,I,p,s).k).a <> 0 );
deffunc F(Nat) = f.(StepWhile=0(a,I,p,s).$1);
A3: for k holds ( F(k+1) < F(k) or S[k] ) by A2;
consider m being Nat such that
A4: S[m] and
A5: for n st S[n] holds m <= n from NAT_1:sch 18(A3);
defpred P[Nat] means $1+1 <= m implies ex k st StepWhile=0(a,I,p,s)
.($1+1)=Comput(p1,s1,k);
A6: now
let k be Nat;
assume
A7: P[k];
now
set sk1=StepWhile=0(a,I,p,s).(k+1);
set sk=StepWhile=0(a,I,p,s).k,
pk = p +* while=0(a,I);
assume
A8: (k+1)+ 1 <= m;
k + 0 < k+ (1+ 1) by XREAL_1:6;
then k < m by A8,XXREAL_0:2;
then
A9: sk.a = 0 by A5;
(k+1)+ 0 < (k+ 1)+ 1 by XREAL_1:6;
then consider n being Nat such that
A10: sk1 = Comput(p1,s1,n) by A7,A8,XXREAL_0:2;
A11: sk1 = Comput(pk +* while=0(a,I), Initialize sk,
LifeSpan(pk +* while=0(a,I) +* I,Initialize sk) + 2)
by SCMFSA_9:def 4;
take m=n +(LifeSpan(pk +* I,Initialize sk1) + 2);
I is_halting_on sk,pk by A1,A9;
then IC sk1 = 0 by A11,A9,SCMFSA_9:22;
then StepWhile=0(a,I,p,s).((k+1)+1)=Comput(p1,s1,
(n +(LifeSpan(p1 +* I,
Initialize(StepWhile=0(a,I,p,s).(k+1))) + 2)))
by A10,SCMFSA_9:26;
hence StepWhile=0(a,I,p,s).((k+1)+1)=Comput(p1,s1,m);
end;
hence P[k+1];
end;
A12: P[0]
proof
assume 0+1 <= m;
take n=(LifeSpan(p1 +* I,Initialize s) + 2);
thus thesis by SCMFSA_9:25;
end;
A13: for k being Nat holds P[k] from NAT_1:sch 2(A12,A6);
per cases;
suppose
m = 0;
then s.a <> 0 by A4,SCMFSA_9:def 4;
hence thesis by SCMFSA_9:18;
end;
suppose
A14: m <> 0;
set ii=(LifeSpan(p +* while=0(a,I) +* I,Initialize s) + 2);
set sm=StepWhile=0(a,I,p,s).m,
pm = p +* while=0(a,I);
set sm1=Initialize sm,
pm1 = pm +* while=0(a,I);
consider i being Nat such that
A15: m=i+1 by A14,NAT_1:6;
reconsider i as Element of NAT by ORDINAL1:def 12;
set si=StepWhile=0(a,I,p,s).i,
psi = p +* while=0(a,I);
A16: sm= Comput(psi +* while=0(a,I),(Initialize si),
(LifeSpan(psi +* I,Initialize si) + 2))
by A15,SCMFSA_9:def 4;
m=i+1 by A15;
then consider n being Nat such that
A17: sm = Comput(p1,s1,n) by A13;
i < m by A15,NAT_1:13;
then
A18: si.a = 0 by A5;
then I is_halting_on si,psi by A1;
then
IC sm = 0 by A16,A18,SCMFSA_9:22;
then Start-At(0,SCM+FSA) c= sm by MEMSTR_0:30;
then
A19: sm1=sm by FUNCT_4:98;
while=0(a,I) is_halting_on sm,pm by A4,SCMFSA_9:18;
then pm1 halts_on sm1 by SCMFSA7B:def 7;
then consider j being Nat such that
A20: CurInstr(pm,Comput(pm,sm,j)) = halt SCM+FSA
by A19;
A21: Comput(p1,s1,n+j)
= Comput(p1,Comput(p1,s1,n),j) by EXTPRO_1:4;
CurInstr(p1,Comput(p1,s1,n+j))
= halt SCM+FSA by A17,A20,A21;
then p1 halts_on s1 by EXTPRO_1:29;
hence while=0(a,I) is_halting_on s,p by SCMFSA7B:def 7;
end;
end;
theorem Th15: :: SCMFSA_9:25, corrected
for I being parahalting really-closed MacroInstruction of SCM+FSA
st WithVariantWhile=0 a, I, s, p
holds while=0(a,I) is_halting_on s,p
proof
let I be parahalting really-closed MacroInstruction of SCM+FSA such that
A1: WithVariantWhile=0 a,I,s,p;
ProperBodyWhile=0 a,I,s,p by SCMFSA7B:19;
hence thesis by A1,Th14;
end;
theorem Th16: :: based on SCMFSA_9:10
for s being 0-started State of SCM+FSA
st while=0(a, I) c= p & s.a <> 0
holds LifeSpan(p,s) = 3 & for k being Nat
holds DataPart Comput(p,s,k) = DataPart s
proof
let s be 0-started State of SCM+FSA;
A1: Start-At(0,SCM+FSA) c= s by MEMSTR_0:29;
assume that
A2: while=0(a, I) c= p and
A3: s.a <> 0;
A4: p +* while=0(a, I) = p by A2,FUNCT_4:98;
set i = a =0_goto 3;
set s1 = Initialize s,
p1 = p +* while=0(a,I);
A5: while=0(a,I) c= p1 by FUNCT_4:25;
A6: IC SCM+FSA in dom Start-At(0,SCM+FSA) by MEMSTR_0:15;
not a in dom Start-At(0,SCM+FSA) by SCMFSA_2:102;
then
A7: s1.a = s.a by FUNCT_4:11;
A8: 1 in dom while=0(a,I) by SCMFSA_X:9;
A9: p1. 1 = while=0(a,I). 1 by A8,FUNCT_4:13
.= goto 2 by SCMFSA_X:10;
A10: IC s1 = IC Start-At(0,SCM+FSA) by A6,FUNCT_4:13
.= 0 by FUNCOP_1:72;
A11: p1/.IC s1 = p1.IC s1 by PBOOLE:143;
0 in dom while=0(a,I) by AFINSQ_1:65;
then p1. 0 = while=0(a,I). 0 by FUNCT_4:13
.= i by SCMFSA_X:10;
then
A12: CurInstr(p1,s1) = i by A10,A11;
A13: Comput(p1,s1,0+1) = Following(p1,Comput(p1,s1,0)) by EXTPRO_1:3
.= Exec(i,s1) by A12;
set loc5= (card I +4);
set s5 = Comput(p1,s1,3),
p5 = p1;
set s4 = Comput(p1,s1,2),
p4 = p1;
set s2 = Comput(p1,s1,1);
A14: 2 in dom while=0(a,I) by SCMFSA_X:5;
A15: p4.2 = while=0(a,I) .2 by A14,FUNCT_4:13
.= goto loc5 by SCMFSA_X:12;
A16: loc5 in dom while=0(a,I) by SCMFSA_X:6;
A17: p5.loc5 = while=0(a,I).loc5 by A16,A5,GRFUNC_1:2
.= halt SCM+FSA by SCMFSA_X:11;
A18: ( for c being Int-Location holds Exec(goto loc5, s4).c = s4.c)& for f
being FinSeq-Location holds Exec(goto loc5, s4).f = s4.f by SCMFSA_2:69;
A19: ( for c being Int-Location holds Exec(goto 2, s2).c = s2.c)& for
f being FinSeq-Location holds Exec(goto 2, s2).f = s2.f by SCMFSA_2:69;
A20: p1/.IC Comput(p1,s1,1) = p1.IC Comput(p1,s1,1) by PBOOLE:143;
IC Comput(p1,s1,1) = 0 + 1 by A3,A10,A13,A7,SCMFSA_2:70;
then
A21: CurInstr(p1,Comput(p1,s1,1)) = goto 2 by A9,A20;
A22: Comput(p1,s1,1+1) = Following(p1,s2) by EXTPRO_1:3
.= Exec(goto 2,s2) by A21;
A23: p4/.IC s4 = p4.IC s4 by PBOOLE:143;
IC s4 = 2 by A22,SCMFSA_2:69;
then
A24: CurInstr(p4,s4) = goto loc5 by A15,A23;
A25: Comput(p1,s1,2+1) = Following(p1,s4) by EXTPRO_1:3
.= Exec(goto loc5,s4) by A24;
A26: p5/.IC s5 = p5.IC s5 by PBOOLE:143;
IC s5 = loc5 by A25,SCMFSA_2:69;
then
A27: CurInstr(p5,s5) = halt SCM+FSA by A17,A26;
then
A28: p1 halts_on s1 by EXTPRO_1:29;
A29: s = s1 by A1,FUNCT_4:98;
now
let k;
assume
A30: CurInstr(p,Comput(p,s,k)) = halt SCM+FSA;
assume 3 > k;
then 2+1 > k;
then
k <= 2 by NAT_1:13;
then k = 0 or ... or k = 2;
then per cases;
suppose
k = 0;
then Comput(p,s,k) = s;
hence contradiction by A29,A12,A30,A4;
end;
suppose
k = 1;
hence contradiction by A29,A21,A30,A4;
end;
suppose
k = 2;
hence contradiction by A29,A24,A30,A4;
end;
end;
hence
A31: LifeSpan(p,s) = 3 by A29,A27,A28,A4,EXTPRO_1:def 15;
A32: ( for c being Int-Location holds Exec(i, s1).c = s1.c)& for f being
FinSeq-Location holds Exec(i, s1).f = s1.f by SCMFSA_2:70;
then
A33: DataPart Comput(p,s,1) = DataPart s by A29,A13,A4,SCMFSA_M:2;
then DataPart Comput(p,s,2) = DataPart s by A29,A22,A19,A4,SCMFSA_M:2;
then
A34: DataPart Comput(p,s,3) = DataPart s by A29,A25,A18,A4,SCMFSA_M:2;
let k be Nat;
k <= 2 or 2 < k;
then
A35: (k = 0 or ... or k = 2) or 2+1 <= k by NAT_1:13;
per cases by A35;
suppose
k = 0;
hence thesis;
end;
suppose
k = 1;
hence thesis by A29,A13,A32,A4,SCMFSA_M:2;
end;
suppose
k = 2;
hence thesis by A29,A22,A19,A33,A4,SCMFSA_M:2;
end;
suppose
3 <= k;
then CurInstr(p,Comput(p,s,k))
= halt SCM+FSA by A29,A28,A31,A4,EXTPRO_1:36;
hence thesis by A31,A34,EXTPRO_1:24;
end;
end;
theorem Th17: :: based on SCMFSA_9:22
for I being really-closed MacroInstruction of SCM+FSA holds
I is_halting_on s,p & s.a = 0 implies DataPart
Comput(p +* while=0(a,I),(Initialize s),
(LifeSpan(p+* I,Initialize s) + 2)) =
DataPart Comput(p +* I,
(Initialize s), (LifeSpan(p+* I,Initialize s)))
proof let I be really-closed MacroInstruction of SCM+FSA;
assume that
A1: I is_halting_on s,p and
A2: s.a = 0;
set sI = Initialize s,
pI = p +* I;
set s1 = Initialize s,
p1 = p +* while=0(a,I);
defpred P[Nat] means $1 <= LifeSpan(p+*I,sI)
implies IC Comput(p1,s1,1+$1) = IC Comput(p+*I,sI,$1) + 3 &
DataPart Comput(p1,s1,1+$1) = DataPart Comput(p+*I,sI,$1);
A3: now
let k be Nat;
assume
A4: P[k];
now
A5: k + 0 < k + 1 by XREAL_1:6;
assume k + 1 <= LifeSpan(p+*I,sI);
then k < LifeSpan(p+*I,sI) by A5,XXREAL_0:2;
hence IC Comput(p1,s1,1+k+1) = IC Comput(pI,sI,k+1) + 3 &
DataPart Comput(p1,s1,1+k+1) = DataPart Comput(pI,sI,k+1)
by A1,A4,SCMFSA_9:19;
end;
hence P[k + 1];
end;
set i = a =0_goto 3;
set s2 = Comput(p1,s1,1), p2 = p1;
A6: IC SCM+FSA in dom Start-At(0,SCM+FSA) by MEMSTR_0:15;
A7: IC s1 = IC Start-At(0,SCM+FSA) by A6,FUNCT_4:13
.= 0 by FUNCOP_1:72; not a in dom Start-At(0,SCM+FSA) by SCMFSA_2:102;
then
A8: s1.a = s.a by FUNCT_4:11;
set loc4 = card I + 2;
A9: p1/.IC s1 = p1.IC s1 by PBOOLE:143;
0 in dom while=0(a,I) by AFINSQ_1:65;
then p1. 0 = while=0(a,I).0 by FUNCT_4:13
.= i by SCMFSA_X:10;
then
A10: CurInstr(p1,s1) = i by A7,A9;
A11: Comput(p1,s1,0+1) = Following(p1,Comput(p1,s1,0)) by EXTPRO_1:3
.= Exec(i,s1) by A10;
then ( for c being Int-Location holds s2.c = s1.c)& for f being
FinSeq-Location holds s2.f = s1.f by SCMFSA_2:70;
then
A12: DataPart s2 = DataPart sI by SCMFSA_M:2;
A13: IC s2 = 3 by A2,A11,A8,SCMFSA_2:70;
A14: P[0]
proof
assume 0 <= LifeSpan(p+*I,sI);
A15: IC SCM+FSA in dom Start-At(0,SCM+FSA) by MEMSTR_0:15;
IC Comput(pI,sI,0)
= IC Start-At(0,SCM+FSA) by A15,FUNCT_4:13
.= 0 by FUNCOP_1:72;
hence thesis by A13,A12;
end;
for k being Nat holds P[k] from NAT_1:sch 2(A14,A3);
then
A16: P[LifeSpan(p+*I,sI)];
set s4=Comput(p1,s1,1+LifeSpan(p+*I,sI)+1),
p4 = p1;
set s3 = Comput(p1,s1,1+LifeSpan(p+*I,sI)),
p3 = p1;
set s2 = Comput(p1,s1,1+LifeSpan(p+*I,sI));
A17: CurInstr(p2,s2) = goto 0 by A1,A16,SCMFSA_9:20;
A18: CurInstr(p3,s3) = goto 0 by A17;
s4 = Following(p1,s3) by EXTPRO_1:3
.= Exec(goto 0,s3) by A18;
then ( for c being Int-Location holds s4.c = s3.c)& for f being
FinSeq-Location holds s4.f = s3.f by SCMFSA_2:69;
hence DataPart Comput(p1,s1,LifeSpan(p+*I,sI)+2) =
DataPart s3 by SCMFSA_M:2
.= DataPart Comput(pI,sI,LifeSpan(p+*I,sI)) by A16;
end;
theorem Th18: :: Step_eq0_0:
(StepWhile=0(a,I,p,s).k).a <> 0 implies
DataPart StepWhile=0(a,I,p,s).(k+1) = DataPart StepWhile=0(a,I,p,s).k
proof
assume
A1: (StepWhile=0(a,I,p,s).k).a <> 0;
set SW = StepWhile=0(a,I,p,s),
PW = p +* while=0(a,I);
A2: while=0(a,I) c= PW by FUNCT_4:25;
A3: DataPart(Initialize(SW.k)) = DataPart SW.k
by MEMSTR_0:79;
then
A4: SW.k.a = (Initialize(SW.k)).a by SCMFSA_M:2;
thus DataPart SW.(k+1) = DataPart Comput(PW +* while=0(a,I),
(Initialize(SW.k)), (LifeSpan(PW +* I,Initialize(SW.k)) + 2))
by SCMFSA_9:def 4
.= DataPart StepWhile=0(a,I,p,s).k by A1,A3,A4,Th16,A2;
end;
theorem Th19: :: Step_eq0_1:
for I being really-closed MacroInstruction of SCM+FSA holds
( I is_halting_on Initialized StepWhile=0(a,I,p,s).k ,p+*while=0(a,I)
or
I is parahalting) & (
StepWhile=0(a,I,p,s).k).a = 0 & (StepWhile=0(a,I,p,s).k).intloc 0 = 1 implies
DataPart StepWhile=0(a,I,p,s).(k+1) =
DataPart IExec(I,p+*while=0(a,I),StepWhile=0(a,I,p,s).k)
proof let I be really-closed MacroInstruction of SCM+FSA;
set Ins = NAT;
assume that
A1: I is_halting_on Initialized StepWhile=0(a,I,p,s).k ,p+*while=0(a,I)
or
I is parahalting and
A2: (StepWhile=0(a,I,p,s).k).a = 0 and
A3: (StepWhile=0(a,I,p,s).k).intloc 0 = 1;
set ISWk = Initialized StepWhile=0(a,I,p,s).k;
set SW = StepWhile=0(a,I,p,s), PW = p +* while=0(a,I);
set SWkI = Initialized(SW.k), PWI = p +* while=0(a,I) +* I;
DataPart ISWk = DataPart SW.k by A3,SCMFSA_M:19;
then
A4: I is_halting_on SW.k ,PW by A1,SCMFSA7B:19,SCMFSA8B:5;
I is_halting_on ISWk ,PW by A1,SCMFSA7B:19;
then
A5: I is_halting_on Initialized SW.k ,PW;
Initialized SW.k = Initialize Initialized(SW.k) by MEMSTR_0:44;
then
A6: PW +* I halts_on Initialized(SW.k) by A5,SCMFSA7B:def 7;
A7: PWI halts_on SWkI by A6;
set SWkIS = Initialize(SW.k),
PWIS = PW +* I;
A8: SWkI = SWkIS by A3,SCMFSA_M:18;
A9: SW.(k+1) = Comput(PW +* while=0(a,I),
(Initialize(SW.k)),LifeSpan(PWIS,SWkIS)+ 2)
by SCMFSA_9:def 4;
A10: DataPart IExec(I,PW,SW.k)
= DataPart Result(PWI,SWkI) by SCMFSA6B:def 1
.= DataPart Comput(PWIS,SWkIS,LifeSpan(PWIS,SWkIS)) by A8,A7,EXTPRO_1:23;
thus DataPart StepWhile=0(a,I,p,s).(k+1)
= DataPart Comput(PWIS,SWkIS,LifeSpan(PWIS,SWkIS)) by A2,A4,Th17,A9
.= DataPart IExec(I,PW,StepWhile=0(a,I,p,s).k) by A10;
end;
theorem :: eGoodStep0:
for Ig being good really-closed MacroInstruction of SCM+FSA holds
(ProperBodyWhile=0 a,Ig,s,p or Ig is parahalting) & s.intloc 0 = 1
implies for k holds StepWhile=0(a,Ig,p,s).k.intloc 0 = 1
proof let Ig be good really-closed MacroInstruction of SCM+FSA;
set I = Ig;
assume that
A1: ProperBodyWhile=0 a,I,s,p or I is parahalting and
A2: s.intloc 0 = 1;
set SW = StepWhile=0(a,I,p,s),
PW = p +* while=0(a,I);
defpred X[Nat] means SW.$1.intloc 0 = 1;
A3: for k being Nat st X[k] holds X[k+1]
proof
let k be Nat such that
A4: SW.k.intloc 0 = 1;
per cases;
suppose
SW.k.a <> 0;
then DataPart SW.(k+1) = DataPart SW.k by Th18;
hence thesis by A4,SCMFSA_M:2;
end;
suppose
A5: SW.k.a = 0;
set Ins = NAT;
set SWkIS = Initialize(SW.k),
PWIS = PW +* I;
set SWkI = Initialized(SW.k), PWI = p +* while=0(a,I) +* I;
set ISWk = Initialized StepWhile=0(a,I,p,s).k;
A6: DataPart SW.k = DataPart ISWk by A4,SCMFSA_M:19;
A7: ProperBodyWhile=0 a,I,s,p by A1,Th13;
I is_halting_on SW.k ,PW by A5,A7;
then
A8: I is_halting_on Initialized SW.k ,PW by A6,SCMFSA8B:5;
Initialized SW.k = Initialize Initialized(SW.k) by MEMSTR_0:44;
then
A9: PW +* I halts_on Initialized(SW.k) by A8,SCMFSA7B:def 7;
A10: PWI halts_on SWkI by A9;
A11: SWkI = SWkIS by A4,SCMFSA_M:18;
A12: DataPart IExec(I,PW,SW.k) = DataPart Result(PWI,SWkI) by SCMFSA6B:def 1
.= DataPart Comput(PWIS,SWkIS,LifeSpan(PWIS
,SWkIS)) by A11,A10,EXTPRO_1:23;
DataPart SW.(k+1) = DataPart IExec(I,PW,SW.k) by A4,A5,A8,Th19;
hence
SW.(k+1).intloc 0 = (Comput(PWIS,SWkIS,LifeSpan(PWIS,SWkIS))).
intloc 0 by A12,SCMFSA_M:2
.= 1 by A4,SCMFSA8C:68;
end;
end;
A13: X[0] by A2,SCMFSA_9:def 4;
thus for k being Nat holds X[k] from NAT_1:sch 2(A13,A3);
end;
theorem
for I being really-closed MacroInstruction of SCM+FSA holds
ProperBodyWhile=0 a,I,s1,p1 & DataPart s1 = DataPart s2 implies for k
holds DataPart StepWhile=0(a,I,p1,s1).k = DataPart StepWhile=0(a,I,p2,s2).k
proof let I be really-closed MacroInstruction of SCM+FSA;
assume that
A1: ProperBodyWhile=0 a,I,s1,p1 and
A2: DataPart s1 = DataPart s2;
set WH = while=0(a,I);
set ST2 = StepWhile=0(a,I,p2,s2),
PT2 = p2 +* while=0(a,I);
set ST1 = StepWhile=0(a,I,p1,s1),
PT1 = p1 +* while=0(a,I);
defpred X[Nat] means DataPart ST1.$1 = DataPart ST2.$1;
A3: for k being Nat st X[k] holds X[k+1]
proof
let k;
set ST1kI = Initialize(ST1.k),
PT1I = PT1 +* I;
set ST2kI = Initialize(ST2.k),
PT2I = PT2 +* I;
A4: I c= PT1I by FUNCT_4:25;
A5: I c= PT2I by FUNCT_4:25;
assume
A6: DataPart ST1.k = DataPart ST2.k;
then
A7: ST1.k.a = ST2.k.a by SCMFSA_M:2;
per cases;
suppose
A8: ST1.k.a <> 0;
hence DataPart ST1.(k+1) = DataPart ST1.k by Th18
.= DataPart ST2.(k+1) by A6,A7,A8,Th18;
end;
suppose
A9: ST1.k.a = 0;
A10: I is_halting_on ST1.k, PT1 by A1,A9;
then
A11: I is_halting_on ST2.k, PT2 by A6,SCMFSA8B:5;
A12: DataPart ST1.(k+1) = DataPart Comput(PT1 +* while=0(a,I),
(Initialize(ST1.k)), (
LifeSpan(PT1I,ST1kI) + 2)) by SCMFSA_9:def 4
.= DataPart Comput(PT1I,(ST1kI),LifeSpan(PT1I,ST1kI)) by A9,A10
,Th17;
A13: DataPart ST2.(k+1) = DataPart Comput(PT2 +* while=0(a,I),
(Initialize(ST2.k)), (
LifeSpan(PT2I,ST2kI) + 2)) by SCMFSA_9:def 4
.= DataPart Comput(PT2I,(ST2kI),
LifeSpan(PT2I,ST2kI)) by A7,A9,A11,Th17;
A14: DataPart ST1.k = DataPart ST1kI by MEMSTR_0:79;
A15: DataPart ST1kI = DataPart ST1.k by MEMSTR_0:79
.= DataPart ST2kI by A6,MEMSTR_0:79;
I is_halting_on ST1kI, PT1I by A10,A14,SCMFSA8B:5;
then (LifeSpan(PT1I,ST1kI)) = (LifeSpan(PT2I,ST2kI))
by A15,A4,A5,SCMFSA8C:18;
hence thesis by A12,A13,A15,A4,A5,SCMFSA8C:17;
end;
end;
DataPart ST1.0 = DataPart s1 by SCMFSA_9:def 4
.= DataPart ST2.0 by A2,SCMFSA_9:def 4;
then
A16: X[0];
thus for k holds X[k] from NAT_1:sch 2(A16, A3);
end;
definition let p;
let s be State of SCM+FSA, a be read-write Int-Location,
I be really-closed MacroInstruction of SCM+FSA;
assume that
A1: ProperBodyWhile=0 a,I,s,p or I is parahalting and
A2: WithVariantWhile=0 a,I,s,p;
func ExitsAtWhile=0(a, I, p, s) -> Nat means
:Def3:
ex k being Nat
st it = k & (StepWhile=0(a,I,p,s).k).a <> 0 &
(for i being Nat
st (StepWhile=0(a,I,p,s).i).a <> 0 holds k <= i) &
DataPart Comput(p +* while=0(a, I),
Initialize s,
(LifeSpan(p +* while=0(a, I),
Initialize s)))
= DataPart StepWhile=0(a,I,p,s).k;
existence
proof
set S = Initialize s,
P = p +* while=0(a, I);
set SW = StepWhile=0(a,I,p,s),
PW = p +* while=0(a,I);
A3: while=0(a,I) c= PW by FUNCT_4:25;
defpred X[Nat] means SW.$1.a <> 0;
consider f being Function of product the_Values_of SCM+FSA, NAT such
that
A4: for k being Nat holds f.(SW.(k+1)) 0 by A6;
thus for n st SW.n.a <> 0 holds m <= n by A7;
defpred P[Nat] means $1+1 <= m implies
ex k st StepWhile=0(a,I,p,s).($1+1)=Comput(P,S,k);
A8: ProperBodyWhile=0 a,I,s,p by A1,Th13;
A9: now
let k be Nat;
assume
A10: P[k];
now
set sk1=StepWhile=0(a,I,p,s).(k+1);
set sk=StepWhile=0(a,I,p,s).k,
pk = p +* while=0(a,I);
assume
A11: (k+1)+ 1 <= m;
k + 0 < k+ (1+ 1) by XREAL_1:6;
then k < m by A11,XXREAL_0:2;
then
A12: sk.a = 0 by A7;
(k+1)+ 0 < (k+ 1)+ 1 by XREAL_1:6;
then consider n being Nat such that
A13: sk1 = Comput(P,S,n) by A10,A11,XXREAL_0:2;
A14: sk1 = Comput(pk +* while=0(a,I),(Initialize sk),
(LifeSpan(pk +* I,Initialize sk) + 2)) by SCMFSA_9:def 4;
take m=n +(LifeSpan(pk +* I,Initialize sk1) +2);
I is_halting_on sk,pk by A8,A12;
then IC sk1 = 0 by A14,A12,SCMFSA_9:22;
hence StepWhile=0(a,I,p,s).((k+1)+1)=Comput(P,S,m) by A13,SCMFSA_9:26;
end;
hence P[k+1];
end;
A15: IC SCM+FSA in dom Start-At(0,SCM+FSA) by MEMSTR_0:15;
A16: P[0]
proof
assume 0+1 <= m;
take n=(LifeSpan(p+*while=0(a,I) +* I,Initialize s) + 2);
thus thesis by SCMFSA_9:25;
end;
A17: for k being Nat holds P[k] from NAT_1:sch 2(A16,A9);
per cases;
suppose
A18: m = 0;
A19: DataPart S = DataPart s by MEMSTR_0:79
.= DataPart SW.m by A18,SCMFSA_9:def 4;
then S.a = SW.m.a by SCMFSA_M:2;
hence thesis by A6,A19,Th16,A3;
end;
suppose
A20: m <> 0;
set sm = StepWhile=0(a,I,p,s).m,
pm = p +* while=0(a,I);
set sm1 = Initialize sm,
pm1 = pm +* while=0(a,I);
consider i being Nat such that
A21: m=i+1 by A20,NAT_1:6;
reconsider i as Element of NAT by ORDINAL1:def 12;
set si = StepWhile=0(a,I,p,s).i,
psi = p +* while=0(a,I);
A22: sm = Comput(psi +* while=0(a,I),(Initialize si),
(LifeSpan(psi +* I,Initialize si) + 2)) by A21,SCMFSA_9:def 4;
m=i+1 by A21;
then consider n being Nat such that
A23: sm = Comput(P,S,n) by A17;
i < m by A21,NAT_1:13;
then
A24: si.a = 0 by A7;
then I is_halting_on si,psi by A8;
then
A25: IC sm = 0 by A22,A24,SCMFSA_9:22;
A26: IC sm1 = IC Start-At(0,SCM+FSA) by A15,FUNCT_4:13
.= IC sm by A25,FUNCOP_1:72;
DataPart sm1 = DataPart sm by MEMSTR_0:79;
then
A27: sm1 = sm by A26,MEMSTR_0:78;
while=0(a,I) is_halting_on sm,pm by A6,SCMFSA_9:18;
then pm1 halts_on sm1 by SCMFSA7B:def 7;
then consider j being Nat such that
A28: CurInstr(pm,Comput(pm,sm,j)) = halt SCM+FSA by A27;
A29: Comput(P,S,n+j)
= Comput(P,Comput(P,S,n),j) by EXTPRO_1:4;
CurInstr(P,Comput(P,S,n+j))
= halt SCM+FSA by A23,A28,A29;
then
A30: Comput(P,S,LifeSpan(P,S)) = Comput(P,S,n+j) by EXTPRO_1:24
.= Comput(P,sm,j) by A23,EXTPRO_1:4
.= Comput(pm,sm,LifeSpan(pm,sm)) by A28,EXTPRO_1:24;
Start-At(0,SCM+FSA) c= sm by A27,FUNCT_4:25;
then sm is 0-started by MEMSTR_0:29;
hence thesis by A6,A30,Th16,A3;
end;
end;
uniqueness
proof
let it1, it2 be Nat;
given k1 being Nat such that
A31: it1 = k1 and
A32: (StepWhile=0(a,I,p,s).k1).a <> 0 & for i being Nat st
( StepWhile=0(a,I,p,s).i).a <> 0 holds k1 <= i and
DataPart(Comput(p +* while=0(a,I),(Initialize s),
(LifeSpan(p +* while=0(a,I),Initialize s))))
= DataPart StepWhile=0(a,I,p,s).k1;
given k2 being Nat such that
A33: it2 = k2 and
A34: (StepWhile=0(a,I,p,s).k2).a <> 0 & for i being Nat st
( StepWhile=0(a,I,p,s).i).a <> 0 holds k2 <= i and
DataPart(Comput(p +* while=0(a,I),(Initialize s),
(LifeSpan(p +* while=0(a,I),Initialize s))))
= DataPart StepWhile=0(a,I,p,s).k2;
k1 <= k2 & k2 <= k1 by A32,A34;
hence thesis by A31,A33,XXREAL_0:1;
end;
end;
theorem :: IE_while_ne0:
s.intloc 0 = 1 & s.a <> 0 implies DataPart IExec(while=0(a,I),p,s) =
DataPart s
proof
set Ins = NAT;
assume that
A1: s.intloc 0 = 1 and
A2: s.a <> 0;
set WH = while=0(a, I);
set Is = Initialized s, pds = p +* WH;
A3: while=0(a,I) c= pds by FUNCT_4:25;
A4: Is = Initialize Is by MEMSTR_0:44;
Is.a = s.a by SCMFSA_M:37;
then WH is_halting_on Is,p by A2,SCMFSA_9:18;
then
A5: pds halts_on Is by A4,SCMFSA7B:def 7;
A6: Is.a = s.a by SCMFSA_M:37;
thus DataPart IExec(WH,p,s)
= DataPart Result(p +* WH,Initialized s) by SCMFSA6B:def 1
.= DataPart Comput(pds,Is,LifeSpan(pds,Is)) by A5,EXTPRO_1:23
.= DataPart Initialized s by A2,A6,Th16,A3
.= DataPart s by A1,SCMFSA_M:19;
end;
theorem :: IE_while_eq0:
for I being really-closed MacroInstruction of SCM+FSA holds
(ProperBodyWhile=0 a,I,Initialized s,p or I is parahalting) &
WithVariantWhile=0 a,I,Initialized s,p
implies
DataPart IExec(while=0(a,I),p,s)
= DataPart
StepWhile=0(a,I,p,Initialized s).ExitsAtWhile=0(a,I,p,Initialized s)
proof let I be really-closed MacroInstruction of SCM+FSA;
set Ins = NAT;
set WH = while=0(a, I);
set Is = Initialized s, pds = p +* WH;
A1: Is = Initialize Is by MEMSTR_0:44;
assume
A2: ( ProperBodyWhile=0 a,I,Initialized s,p or I is parahalting)&
WithVariantWhile=0 a,I,Initialized s,p;
then
A3: ex k being Nat st ExitsAtWhile=0(a,I,p,Is) = k &
(StepWhile=0(a, I, p, Is).k).a <> 0 &
( for i being Nat st ( StepWhile=0(a,I,p,Is).i)
.a <> 0 holds k <= i)& DataPart(Comput(p +* while=0(a,I),
Initialize Is, LifeSpan(p +* while=0(a,I),Initialize Is))) =
DataPart StepWhile=0(a,I,p,Is).k
by Def3;
WH is_halting_on Is,p by A2,Th14,Th15;
then
A4: pds halts_on Is by A1,SCMFSA7B:def 7;
thus DataPart IExec(while=0(a, I),p,s)
= DataPart Result(p +* WH,Initialized s) by SCMFSA6B:def 1
.= DataPart StepWhile=0(a,I,p,Is).ExitsAtWhile=0(a,I,p,Is) by A1,A4,A3,
EXTPRO_1:23;
end;
begin :: while>0, general
Lm5: for a being Int-Location, I being MacroInstruction of SCM+FSA
holds UsedILoc if>0(a,I ';' goto 0) =
UsedILoc (if>0(a,I ';' goto 0) +* (card I + 2,goto 0))
proof
let a be Int-Location;
let I be MacroInstruction of SCM+FSA;
set I1 = I ';' goto 0;
set Lc4 = card I + 2;
set if0 = if>0(a,I1);
A1: Lc4 = card I + 1 + 1
.= card I1 + 1 by COMPOS_2:11;
A2: card if>0(a,I1) = card I1 + 4 by SCMFSA_X:2;
Lc4 < card I1 + 4 by XREAL_1:6,A1;
then
A3: Lc4 in dom if>0(a,I1) by A2,AFINSQ_1:66;
A4: if0.Lc4 in rng if0 by A3,FUNCT_1:3;
rng if0 c= the InstructionsF of SCM+FSA by RELAT_1:def 19;
then reconsider pc = if0.Lc4 as Instruction of SCM+FSA by A4;
UsedIntLoc pc = UsedIntLoc goto(0+Lc4) by Lm2,A1
.= {} by SF_MASTR:15
.= UsedIntLoc goto 0 by SF_MASTR:15;
hence UsedILoc if0 = UsedILoc(if0+*(Lc4,goto 0)) by SCMFSA_9:49;
end;
Lm6: for a being Int-Location, I being MacroInstruction of SCM+FSA
holds UsedI*Loc if>0(a,I ';' goto 0)
= UsedI*Loc(if>0(a,I ';' goto 0) +* (card I + 2,goto 0))
proof
let a be Int-Location;
let I be MacroInstruction of SCM+FSA;
set Lc4 = card I + 2;
set IG = I ';' goto 0;
set if0 = if>0(a,IG);
A1: Lc4 = card I +1+1
.= card IG + 1 by COMPOS_2:11;
A2: card if>0(a,IG) = card IG + 4 by SCMFSA_X:2;
Lc4 < card IG + 4 by XREAL_1:6,A1;
then
A3: Lc4 in dom if>0(a,IG) by A2,AFINSQ_1:66;
A4: if0.Lc4 in rng if0 by A3,FUNCT_1:3;
rng if0 c= the InstructionsF of SCM+FSA by RELAT_1:def 19;
then reconsider pc = if0.Lc4 as Instruction of SCM+FSA by A4;
UsedInt*Loc pc = UsedInt*Loc goto(0+Lc4) by Lm2,A1
.= {} by SF_MASTR:32
.= UsedInt*Loc goto 0 by SF_MASTR:32;
hence UsedI*Loc if0 = UsedI*Loc(if0+*(Lc4,goto 0)) by SCMFSA_9:50;
end;
theorem Th24:
UsedILoc while>0(b, I) = {b} \/ UsedILoc I
proof
set J = Stop SCM+FSA;
set a = b;
set IG = I ';' goto 0;
A1: UsedILoc(I ';' goto 0) = UsedILoc I by SF_MASTR:66;
thus UsedILoc while>0(a, I) = (UsedILoc if>0(a, IG)) by Lm5
.= UsedILoc (a >0_goto 3 ";"
Goto (card IG + 1) ";" IG) \/ {} by Th3,SF_MASTR:27
.= UsedILoc (a >0_goto 3 ";"
Goto (card IG + 1)) \/ UsedILoc I by A1,SF_MASTR:27
.= UsedIntLoc (a >0_goto 3) \/
UsedILoc Goto (card IG + 1) \/ UsedILoc I by SF_MASTR:29
.= UsedIntLoc (a >0_goto 3) \/ {} \/ UsedILoc I by Th5
.= {a} \/ UsedILoc I by SF_MASTR:16;
end;
theorem Th25:
UsedI*Loc while>0(b, I) = UsedI*Loc I
proof
set J = Stop SCM+FSA;
set a = b;
set IG = I ';' goto 0;
A1: UsedI*Loc(I ';' goto 0) = UsedI*Loc I by SF_MASTR:67;
thus UsedI*Loc while>0(a, I) = (UsedI*Loc if>0(a, IG)) by Lm6
.= UsedI*Loc (a >0_goto 3 ";"
Goto (card IG + 1) ";" IG) \/ {} by Th4,SF_MASTR:43
.= UsedI*Loc (a >0_goto 3 ";"
Goto (card IG + 1)) \/ UsedI*Loc I by A1,SF_MASTR:43
.= UsedInt*Loc (a >0_goto 3) \/
UsedI*Loc Goto (card IG + 1) \/ UsedI*Loc I by SF_MASTR:45
.= UsedInt*Loc (a >0_goto 3) \/ {} \/ UsedI*Loc I by Th6
.= {} \/ UsedI*Loc I by SF_MASTR:32
.= UsedI*Loc I;
end;
definition let p;
let s be State of SCM+FSA, a be read-write Int-Location,
I be MacroInstruction of SCM+FSA;
pred ProperBodyWhile>0 a,I,s,p means
for k being Nat st StepWhile>0(a,I,p,s).k.a > 0
holds I is_halting_on StepWhile>0(a,I,p,s).k, p+*while>0(a,I);
pred WithVariantWhile>0 a,I,s,p means
ex f being Function of product the_Values_of SCM+FSA, NAT
st for k being Nat holds ( f.(
StepWhile>0(a,I,p,s).(k+1)) < f.(StepWhile>0(a,I,p,s).k) or
StepWhile>0(a,I,p,s).k.a <= 0 );
end;
theorem Th26: :: ParaProper:
for I being parahalting MacroInstruction of SCM+FSA holds
ProperBodyWhile>0 a,I,s,p by SCMFSA7B:19;
theorem Th27: :: SCMFSA_9:42, corrected
for I being really-closed MacroInstruction of SCM+FSA holds
ProperBodyWhile>0 a,I,s,p & WithVariantWhile>0 a,I,s,p implies
while>0(a,I) is_halting_on s,p
proof let I be really-closed MacroInstruction of SCM+FSA;
assume
A1: for k being Nat st StepWhile>0(a,I,p,s).k.a > 0 holds
I is_halting_on StepWhile>0(a,I,p,s).k, p+*while>0(a,I);
set s1 = Initialize s,
p1 = p +* while>0(a,I);
defpred S[Nat] means StepWhile>0(a,I,p,s).$1.a <= 0;
given f being Function of product the_Values_of SCM+FSA,NAT such that
A2: for k being Nat holds (f.(StepWhile>0(a,I,p,s).(k+1)) < f.(
StepWhile>0(a,I,p,s).k) or (StepWhile>0(a,I,p,s).k).a <= 0 );
deffunc F(Nat) = f.(StepWhile>0(a,I,p,s).$1);
A3: for k holds F(k+1) < F(k) or S[k] by A2;
consider m being Nat such that
A4: S[m] and
A5: for n st S[n] holds m <= n from NAT_1:sch 18(A3);
defpred P[Nat] means $1+1 <= m implies
ex k st StepWhile>0(a,I,p,s).($1+1)=Comput(p1,s1,k);
A6: now
let k be Nat;
assume
A7: P[k];
now
set sk1=StepWhile>0(a,I,p,s).(k+1);
set sk=StepWhile>0(a,I,p,s).k,
pk = p +* while>0(a,I);
assume
A8: (k+1)+ 1 <= m;
k + 0 < k+ (1+ 1) by XREAL_1:6;
then k < m by A8,XXREAL_0:2;
then
A9: sk.a > 0 by A5;
(k+1)+ 0 < (k+ 1)+ 1 by XREAL_1:6;
then consider n being Nat such that
A10: sk1 = Comput(p1,s1,n) by A7,A8,XXREAL_0:2;
A11: sk1 = Comput(pk +* while>0(a,I),(Initialize sk),
(LifeSpan(pk +* I,Initialize sk) + 2))
by SCMFSA_9:def 5;
take m=n +(LifeSpan(pk +* I,Initialize sk1) + 2);
I is_halting_on sk,pk by A1,A9;
then IC sk1 = 0 by A11,A9,SCMFSA_9:42;
hence StepWhile>0(a,I,p,s).((k+1)+1)=Comput(p1,s1,m) by A10,SCMFSA_9:45;
end;
hence P[k+1];
end;
A12: P[0]
proof
assume 0+1 <= m;
take n=(LifeSpan(p +* while>0(a,I) +* I,Initialize s) + 2);
thus thesis by SCMFSA_9:44;
end;
A13: for k being Nat holds P[k] from NAT_1:sch 2(A12,A6);
per cases;
suppose
m=0;
then s.a <= 0 by A4,SCMFSA_9:def 5;
hence thesis by SCMFSA_9:38;
end;
suppose
A14: m<>0;
set ii=(LifeSpan(p+* while>0(a,I) +* I,Initialize s) + 2);
set sm=StepWhile>0(a,I,p,s).m,
pm = p +* while>0(a,I);
set sm1=Initialize sm,
pm1 = pm +* while>0(a,I);
consider i being Nat such that
A15: m=i+1 by A14,NAT_1:6;
reconsider i as Element of NAT by ORDINAL1:def 12;
set si=StepWhile>0(a,I,p,s).i,
psi = p +* while>0(a,I);
A16: sm= Comput(psi +* while>0(a,I),(Initialize si),
(LifeSpan(psi +* I,Initialize si) + 2))
by A15,SCMFSA_9:def 5;
m=i+1 by A15;
then consider n being Nat such that
A17: sm = Comput(p1,s1,n) by A13;
i < m by A15,NAT_1:13;
then
A18: si.a > 0 by A5;
then I is_halting_on si,psi by A1;
then
IC sm = 0 by A16,A18,SCMFSA_9:42;
then Start-At(0,SCM+FSA) c= sm by MEMSTR_0:30;
then
A19: sm1=sm by FUNCT_4:98;
while>0(a,I) is_halting_on sm,pm by A4,SCMFSA_9:38;
then pm1 halts_on sm1 by SCMFSA7B:def 7;
then consider j being Nat such that
A20: CurInstr(pm,Comput(pm,sm,j)) = halt SCM+FSA by A19;
A21: Comput(p1,s1,n+j) = Comput(p1,Comput(p1,s1,n),j) by EXTPRO_1:4;
CurInstr(p1,Comput(p1,s1,n+j)) = halt SCM+FSA by A17,A20,A21;
then p1 halts_on s1 by EXTPRO_1:29;
hence while>0(a,I) is_halting_on s,p by SCMFSA7B:def 7;
end;
end;
theorem Th28: :: SCMFSA_9:43, corrected
for I being parahalting really-closed MacroInstruction of SCM+FSA
st WithVariantWhile>0 a, I, s, p
holds while>0(a,I) is_halting_on s,p
proof
let I be parahalting really-closed MacroInstruction of SCM+FSA such that
A1: WithVariantWhile>0 a,I,s,p;
ProperBodyWhile>0 a,I,s,p by SCMFSA7B:19;
hence thesis by A1,Th27;
end;
theorem Th29: :: based on SCMFSA_9:10
for s being 0-started State of SCM+FSA
st while>0(a, I) c= p & s.a <= 0
holds LifeSpan(p,s) = 3 & for k being Nat
holds DataPart Comput(p,s,k) = DataPart s
proof
let s be 0-started State of SCM+FSA;
A1: Start-At(0,SCM+FSA) c= s by MEMSTR_0:29;
assume that
A2: while>0(a, I) c= p and
A3: s.a <= 0;
A4: p +* while>0(a, I) = p by A2,FUNCT_4:98;
set i = a >0_goto 3;
set s1 = Initialize s,
p1 = p +* while>0(a,I);
A5: while>0(a,I) c= p1 by FUNCT_4:25;
A6: IC SCM+FSA in dom Start-At(0,SCM+FSA) by MEMSTR_0:15;
not a in dom Start-At(0,SCM+FSA) by SCMFSA_2:102;
then
A7: s1.a = s.a by FUNCT_4:11;
A8: 1 in dom while>0(a,I) by SCMFSA_X:9;
A9: p1. 1 = while>0(a,I). 1 by A8,FUNCT_4:13
.= goto 2 by SCMFSA_X:10;
A10: IC s1 = IC Start-At(0,SCM+FSA) by A6,FUNCT_4:13
.= 0 by FUNCOP_1:72;
A11: p1/.IC s1 = p1.IC s1 by PBOOLE:143;
0 in dom while>0(a,I) by AFINSQ_1:65;
then p1. 0 = while>0(a,I). 0 by FUNCT_4:13
.= i by SCMFSA_X:10;
then
A12: CurInstr(p1,s1) = i by A10,A11;
A13: Comput(p1,s1,0+1) = Following(p1,Comput(p1,s1,0)) by EXTPRO_1:3
.= Exec(i,s1) by A12;
set loc5= (card I +4);
set s5 = Comput(p1,s1,3),
p5 = p1;
set s4 = Comput(p1,s1,2),
p4 = p1;
set s2 = Comput(p1,s1,1);
A14: 2 in dom while>0(a,I) by SCMFSA_X:7;
A15: p4.2 = while>0(a,I) .2 by A14,FUNCT_4:13
.= goto loc5 by SCMFSA_X:17;
A16: loc5 in dom while>0(a,I) by SCMFSA_X:8;
A17: p5.loc5 = while>0(a,I).loc5 by A16,A5,GRFUNC_1:2
.= halt SCM+FSA by SCMFSA_X:16;
A18: ( for c being Int-Location holds Exec(goto loc5, s4).c = s4.c)& for f
being FinSeq-Location holds Exec(goto loc5, s4).f = s4.f by SCMFSA_2:69;
A19: ( for c being Int-Location holds Exec(goto 2, s2).c = s2.c)& for
f being FinSeq-Location holds Exec(goto 2, s2).f = s2.f by SCMFSA_2:69;
A20: p1/.IC Comput(p1,s1,1) = p1.IC Comput(p1,s1,1) by PBOOLE:143;
IC Comput(p1,s1,1) = 0 + 1 by A3,A10,A13,A7,SCMFSA_2:71;
then
A21: CurInstr(p1,Comput(p1,s1,1)) = goto 2 by A9,A20;
A22: Comput(p1,s1,1+1) = Following(p1,s2) by EXTPRO_1:3
.= Exec(goto 2,s2) by A21;
A23: p4/.IC s4 = p4.IC s4 by PBOOLE:143;
IC s4 = 2 by A22,SCMFSA_2:69;
then
A24: CurInstr(p4,s4) = goto loc5 by A15,A23;
A25: Comput(p1,s1,2+1) = Following(p1,s4) by EXTPRO_1:3
.= Exec(goto loc5,s4) by A24;
A26: p5/.IC s5 = p5.IC s5 by PBOOLE:143;
IC s5 = loc5 by A25,SCMFSA_2:69;
then
A27: CurInstr(p5,s5) = halt SCM+FSA by A17,A26;
then
A28: p1 halts_on s1 by EXTPRO_1:29;
A29: s = s1 by A1,FUNCT_4:98;
now
let k;
assume
A30: CurInstr(p,Comput(p,s,k)) = halt SCM+FSA;
assume 3 > k;
then 2+1 > k;
then
k <= 2 by NAT_1:13;
then k = 0 or ... or k = 2;
then per cases;
suppose
k = 0;
then Comput(p,s,k) = s;
hence contradiction by A29,A12,A30,A4;
end;
suppose
k = 1;
hence contradiction by A29,A21,A30,A4;
end;
suppose
k = 2;
hence contradiction by A29,A24,A30,A4;
end;
end;
hence
A31: LifeSpan(p,s) = 3 by A29,A27,A28,A4,EXTPRO_1:def 15;
A32: ( for c being Int-Location holds Exec(i, s1).c = s1.c)& for f being
FinSeq-Location holds Exec(i, s1).f = s1.f by SCMFSA_2:71;
then
A33: DataPart Comput(p,s,1) = DataPart s by A29,A13,A4,SCMFSA_M:2;
then DataPart Comput(p,s,2) = DataPart s by A29,A22,A19,A4,SCMFSA_M:2;
then
A34: DataPart Comput(p,s,3) = DataPart s by A29,A25,A18,A4,SCMFSA_M:2;
let k be Nat;
k <= 2 or 2 < k;
then
A35: (k = 0 or ... or k = 2) or 2+1 <= k by NAT_1:13;
per cases by A35;
suppose
k = 0;
hence thesis;
end;
suppose
k = 1;
hence thesis by A29,A13,A32,A4,SCMFSA_M:2;
end;
suppose
k = 2;
hence thesis by A29,A22,A19,A33,A4,SCMFSA_M:2;
end;
suppose
3 <= k;
then CurInstr(p,Comput(p,s,k))
= halt SCM+FSA by A29,A28,A31,A4,EXTPRO_1:36;
hence thesis by A31,A34,EXTPRO_1:24;
end;
end;
theorem Th30: :: based on SCMFSA_9:36
for I being really-closed MacroInstruction of SCM+FSA holds
I is_halting_on s,p & s.a > 0 implies DataPart
Comput(p +* while>0(a,I),Initialize s,LifeSpan(p +* I,Initialize s) + 2)
= DataPart Comput(p +* I,Initialize s,LifeSpan(p +* I,Initialize s))
proof let I be really-closed MacroInstruction of SCM+FSA;
assume that
A1: I is_halting_on s,p and
A2: s.a > 0;
set sI = Initialize s,
pI = p +* I;
set s1 = Initialize s,
p1 = p +* while>0(a,I);
defpred P[Nat] means $1 <= LifeSpan(pI,sI) implies
IC Comput(p1,s1,1+$1) = IC Comput(pI,sI,$1) + 3 &
DataPart Comput(p1,s1,1+$1) = DataPart Comput(pI,sI,$1);
A3: now
let k be Nat;
assume
A4: P[k];
now
A5: k + 0 < k + 1 by XREAL_1:6;
assume k + 1 <= LifeSpan(pI,sI);
then k < LifeSpan(pI,sI) by A5,XXREAL_0:2;
hence IC Comput(p1,s1,1+k+1) = IC Comput(pI,sI,k+1) + 3 & DataPart
Comput(p1,s1,1+k+1) = DataPart Comput(pI,sI,k+1) by A1,A4,SCMFSA_9:39;
end;
hence P[k + 1];
end;
set i = a >0_goto 3;
set s2 = Comput(p1,s1,1),
p2 = p1;
A6: IC SCM+FSA in dom Start-At(0,SCM+FSA) by MEMSTR_0:15;
A7: IC s1 = IC Start-At(0,SCM+FSA) by A6,FUNCT_4:13
.= 0 by FUNCOP_1:72;
not a in dom Start-At(0,SCM+FSA) by SCMFSA_2:102;
then
A8: s1.a = s.a by FUNCT_4:11;
set loc4 = (card I + 3);
A9: p1/.IC s1 = p1.IC s1 by PBOOLE:143;
0 in dom while>0(a,I) by AFINSQ_1:65;
then p1. 0 = while>0(a,I). 0 by FUNCT_4:13
.= i by SCMFSA_X:10;
then
A10: CurInstr(p1,s1) = i by A7,A9;
A11: Comput(p1,s1,0+1) = Following(p1,Comput(p1,s1,0)) by EXTPRO_1:3
.= Exec(i,s1) by A10;
then ( for c being Int-Location holds s2.c = s1.c)& for f being
FinSeq-Location holds s2.f = s1.f by SCMFSA_2:71;
then
A12: DataPart s2 = DataPart sI by SCMFSA_M:2;
A13: IC s2 = 3 by A2,A11,A8,SCMFSA_2:71;
A14: P[0]
proof
assume 0 <= LifeSpan(pI,sI);
A15: IC SCM+FSA in dom Start-At(0,SCM+FSA) by MEMSTR_0:15;
IC Comput(pI,sI,0)
= IC Start-At(0,SCM+FSA) by A15,FUNCT_4:13
.= 0 by FUNCOP_1:72;
hence thesis by A13,A12;
end;
for k being Nat holds P[k] from NAT_1:sch 2(A14,A3);
then
A16: P[LifeSpan(pI,sI)];
set s4=Comput(p1,s1,1+LifeSpan(pI,sI)+1),
p4 = p1;
set s3 = Comput(p1,s1,1+LifeSpan(pI,sI)),
p3 = p1;
set s2 = Comput(p1,s1,1+LifeSpan(pI,sI));
A17: CurInstr(p2,s2) = goto 0 by A1,A16,SCMFSA_9:40;
A18: CurInstr(p3,s3) = goto 0 by A17;
s4 = Following(p1,s3) by EXTPRO_1:3
.= Exec(goto 0,s3) by A18;
then ( for c being Int-Location holds s4.c = s3.c)& for f being
FinSeq-Location holds s4.f = s3.f by SCMFSA_2:69;
hence DataPart Comput(p1,s1,LifeSpan(pI,sI)+2) =
DataPart s3 by SCMFSA_M:2
.= DataPart Comput(pI,sI,LifeSpan(pI,sI)) by A16;
end;
theorem Th31: :: Step_gt0_0:
(StepWhile>0(a,I,p,s).k).a <= 0 implies
DataPart StepWhile>0(a,I,p,s).(k+1) = DataPart StepWhile>0(a,I,p,s).k
proof
assume
A1: (StepWhile>0(a,I,p,s).k).a <= 0;
set SW = StepWhile>0(a,I,p,s),
PW = p +* while>0(a,I);
A2: while>0(a,I) c= PW by FUNCT_4:25;
A3: DataPart(Initialize(SW.k)) = DataPart SW.k
by MEMSTR_0:79;
then
A4: SW.k.a = (Initialize(SW.k)).a by SCMFSA_M:2;
thus DataPart SW.(k+1) = DataPart Comput(PW +* while>0(a,I),
(Initialize(SW.k)
), (LifeSpan(PW +* I,Initialize(SW.k)) + 2)) by SCMFSA_9:def 5
.= DataPart StepWhile>0(a,I,p,s).k by A1,A3,A4,Th29,A2;
end;
theorem Th32: :: Step_gt0_1:
for I being really-closed MacroInstruction of SCM+FSA holds
( I is_halting_on Initialized StepWhile>0(a,I,p,s).k ,p+*while>0(a,I)
or
I is parahalting) & (
StepWhile>0(a,I,p,s).k).a > 0 & (StepWhile>0(a,I,p,s).k).intloc 0 = 1 implies
DataPart StepWhile>0(a,I,p,s).(k+1)
= DataPart IExec(I,p+*while>0(a,I),StepWhile>0(a,I,p,s).k)
proof let I be really-closed MacroInstruction of SCM+FSA;
set Ins = NAT;
assume that
A1: I is_halting_on Initialized StepWhile>0(a,I,p,s).k ,p+*while>0(a,I)
or
I is parahalting and
A2: (StepWhile>0(a,I,p,s).k).a > 0 and
A3: (StepWhile>0(a,I,p,s).k).intloc 0 = 1;
set SW = StepWhile>0(a,I,p,s), PW = p +* while>0(a,I);
set ISWk = Initialized(SW.k);
set SWkI = Initialized(SW.k), PWI = p +* while>0(a,I) +* I;
DataPart ISWk = DataPart SW.k by A3,SCMFSA_M:19;
then
A4: I is_halting_on SW.k ,PW by A1,SCMFSA7B:19,SCMFSA8B:5;
I is_halting_on ISWk ,PW by A1,SCMFSA7B:19;
then
A5: I is_halting_on Initialized SW.k ,PW;
Initialized(SW.k) = Initialize Initialized(SW.k) by MEMSTR_0:44;
then
A6: PW +* I halts_on Initialized(SW.k) by A5,SCMFSA7B:def 7;
A7: PWI halts_on SWkI by A6;
set SWkIS = Initialize(SW.k),
PWIS = PW +* I;
A8: SWkI = SWkIS by A3,SCMFSA_M:18;
A9: SW.(k+1)
= Comput(PW +* while>0(a,I),(Initialize(SW.k)),LifeSpan(PWIS,SWkIS)+ 2)
by SCMFSA_9:def 5;
A10: DataPart IExec(I,PW,SW.k)
= DataPart Result(PWI,SWkI) by SCMFSA6B:def 1
.= DataPart Comput(PWIS,SWkIS,LifeSpan(PWIS,SWkIS)) by A8,A7,EXTPRO_1:23;
thus
DataPart StepWhile>0(a,I,p,s).(k+1)
= DataPart Comput(PWIS,SWkIS,LifeSpan(PWIS,SWkIS))
by A2,A4,Th30,A9
.= DataPart IExec(I,PW,StepWhile>0(a,I,p,s).k) by A10;
end;
theorem Th33: :: GoodStep0:
for Ig being good really-closed MacroInstruction of SCM+FSA holds
(ProperBodyWhile>0 a,Ig,s,p or Ig is parahalting) & s.intloc 0 =
1 implies for k holds StepWhile>0(a,Ig,p,s).k.intloc 0 = 1
proof let Ig be good really-closed MacroInstruction of SCM+FSA;
set I = Ig;
assume that
A1: ProperBodyWhile>0 a,I,s,p or I is parahalting and
A2: s.intloc 0 = 1;
set SW = StepWhile>0(a,I,p,s),
PW = p +* while>0(a,I);
defpred X[Nat] means SW.$1.intloc 0 = 1;
A3: for k being Nat st X[k] holds X[k+1]
proof
let k be Nat such that
A4: SW.k.intloc 0 = 1;
per cases;
suppose
SW.k.a <= 0;
then DataPart SW.(k+1) = DataPart SW.k by Th31;
hence thesis by A4,SCMFSA_M:2;
end;
suppose
A5: SW.k.a > 0;
set SWkI = Initialized SW.k, PWI = p +* while>0(a,I) +* I;
A6: DataPart SW.k = DataPart SWkI by A4,SCMFSA_M:19;
set Ins = NAT;
set SWkIS = Initialize(SW.k),
PWIS = PW +* I;
A7: SWkI = SWkIS by A4,SCMFSA_M:18;
A8: ProperBodyWhile>0 a,I,s,p by A1,Th26;
I is_halting_on SW.k ,PW by A5,A8;
then
A9: I is_halting_on Initialized SW.k ,PW by A6,SCMFSA8B:5;
Initialized SW.k = Initialize Initialized(SW.k) by MEMSTR_0:44;
then
A10: PW +* I halts_on Initialized SW.k by A9,SCMFSA7B:def 7;
A11: PWI halts_on SWkI by A10;
A12: DataPart IExec(I,PW,SW.k) = DataPart Result(PWI,SWkI) by SCMFSA6B:def 1
.= DataPart Comput(PWIS,SWkIS,LifeSpan(PWIS,SWkIS))
by A7,A11,EXTPRO_1:23;
DataPart SW.(k+1) = DataPart IExec(I,PW,SW.k) by A4,A5,A9,Th32;
hence
SW.(k+1).intloc 0 = (Comput(PWIS,SWkIS,LifeSpan(PWIS,SWkIS))).intloc 0
by A12,SCMFSA_M:2
.= 1 by A4,SCMFSA8C:68;
end;
end;
A13: X[0] by A2,SCMFSA_9:def 5;
thus for k being Nat holds X[k] from NAT_1:sch 2(A13,A3);
end;
theorem Th34:
for I being really-closed MacroInstruction of SCM+FSA holds
ProperBodyWhile>0 a,I,s1,p1 & DataPart s1 = DataPart s2 implies
for k holds DataPart StepWhile>0(a,I,p1,s1).k
= DataPart StepWhile>0(a,I,p2,s2).k
proof let I be really-closed MacroInstruction of SCM+FSA;
assume that
A1: ProperBodyWhile>0 a,I,s1,p1 and
A2: DataPart s1 = DataPart s2;
set WH = while>0(a,I);
set ST2 = StepWhile>0(a,I,p2,s2),
PT2 = p2 +* while>0(a,I);
set ST1 = StepWhile>0(a,I,p1,s1),
PT1 = p1 +* while>0(a,I);
defpred X[Nat] means DataPart ST1.$1 = DataPart ST2.$1;
A3: for k st X[k] holds X[k+1]
proof
let k;
set ST1kI = Initialize(ST1.k),
PT1I = PT1 +* I;
set ST2kI = Initialize(ST2.k),
PT2I = PT2 +* I;
A4: I c= PT1I by FUNCT_4:25;
A5: I c= PT2I by FUNCT_4:25;
assume
A6: DataPart ST1.k = DataPart ST2.k;
then
A7: ST1.k.a = ST2.k.a by SCMFSA_M:2;
per cases;
suppose
A8: ST1.k.a <= 0;
hence DataPart ST1.(k+1) = DataPart ST1.k by Th31
.= DataPart ST2.(k+1) by A6,A7,A8,Th31;
end;
suppose
A9: ST1.k.a > 0;
A10: I is_halting_on ST1.k, PT1 by A1,A9;
then
A11: I is_halting_on ST2.k, PT2 by A6,SCMFSA8B:5;
A12: DataPart ST1.(k+1) = DataPart Comput(PT1 +* while>0(a,I),
(Initialize(ST1.k)), (
LifeSpan(PT1I,ST1kI) + 2)) by SCMFSA_9:def 5
.= DataPart Comput(PT1I,(ST1kI),
LifeSpan(PT1I,ST1kI)) by A9,A10,Th30;
A13: DataPart ST2.(k+1) = DataPart Comput(PT2 +* while>0(a,I),
(Initialize(ST2.k)), (
LifeSpan(PT2I,ST2kI) + 2)) by SCMFSA_9:def 5
.= DataPart Comput(PT2I,(ST2kI),
LifeSpan(PT2I,ST2kI)) by A7,A9,A11,Th30;
A14: DataPart ST1.k = DataPart ST1kI by MEMSTR_0:79;
A15: DataPart ST1kI = DataPart ST1.k by MEMSTR_0:79
.= DataPart ST2kI by A6,MEMSTR_0:79;
I is_halting_on ST1kI, PT1I by A10,A14,SCMFSA8B:5;
then (LifeSpan(PT1I,ST1kI)) = (LifeSpan(PT2I,
ST2kI)) by A15,A4,A5,SCMFSA8C:18;
hence thesis by A12,A13,A15,A4,A5,SCMFSA8C:17;
end;
end;
DataPart ST1.0 = DataPart s1 by SCMFSA_9:def 5
.= DataPart ST2.0 by A2,SCMFSA_9:def 5;
then
A16: X[0];
thus for k holds X[k] from NAT_1:sch 2(A16, A3);
end;
definition let p;
let s be State of SCM+FSA, a be read-write Int-Location,
I be really-closed MacroInstruction of SCM+FSA;
assume that
A1: ProperBodyWhile>0 a,I,s,p or I is parahalting and
A2: WithVariantWhile>0 a,I,s,p;
func ExitsAtWhile>0(a, I, p, s) -> Nat means
:Def6:
ex k being Nat st it = k &
(StepWhile>0(a,I,p,s).k).a <= 0 &
(for i being Nat st (StepWhile>0(a,I,p,s).i).a <= 0
holds k <= i) &
DataPart Comput(p +* while>0(a, I),
Initialize s,
(LifeSpan(p +* while>0(a, I),
Initialize s)))
= DataPart StepWhile>0(a,I,p,s).k;
existence
proof
set S = Initialize s,
P = p +* while>0(a, I);
set SW = StepWhile>0(a,I,p,s),
PW = p +* while>0(a,I);
A3: while>0(a,I) c= PW by FUNCT_4:25;
defpred X[Nat] means SW.$1.a <= 0;
consider f being Function of product the_Values_of SCM+FSA, NAT such
that
A4: for k being Nat holds f.(SW.(k+1))0(a,I,p,s).($1+1)=Comput(P,S,k);
A8: ProperBodyWhile>0 a,I,s,p by A1,Th26;
A9: now
let k be Nat;
assume
A10: P[k];
now
set sk1=StepWhile>0(a,I,p,s).(k+1);
set sk=StepWhile>0(a,I,p,s).k,
pk = p +* while>0(a,I);
assume
A11: (k+1)+ 1 <= m;
k + 0 < k+ (1+ 1) by XREAL_1:6;
then k < m by A11,XXREAL_0:2;
then
A12: sk.a > 0 by A7;
(k+1)+ 0 < (k+ 1)+ 1 by XREAL_1:6;
then consider n being Nat such that
A13: sk1 = Comput(P,S,n) by A10,A11,XXREAL_0:2;
A14: sk1 = Comput(pk +* while>0(a,I),(Initialize sk),
(LifeSpan(pk +* I,Initialize sk) + 2)) by SCMFSA_9:def 5;
take m=n +(LifeSpan(pk +* I,Initialize sk1) + 2);
I is_halting_on sk,pk by A8,A12;
then IC sk1 = 0 by A14,A12,SCMFSA_9:42;
hence StepWhile>0(a,I,p,s).((k+1)+1)=Comput(P,S,m) by A13,SCMFSA_9:45;
end;
hence P[k+1];
end;
A15: IC SCM+FSA in dom Start-At(0,SCM+FSA) by MEMSTR_0:15;
A16: P[0]
proof
assume 0+1 <= m;
take n=(LifeSpan(p +*while>0(a,I) +* I,Initialize s) + 2);
thus thesis by SCMFSA_9:44;
end;
A17: for k being Nat holds P[k] from NAT_1:sch 2(A16,A9);
per cases;
suppose
A18: m = 0;
A19: DataPart S = DataPart s by MEMSTR_0:79
.= DataPart SW.m by A18,SCMFSA_9:def 5;
then S.a = SW.m.a by SCMFSA_M:2;
hence thesis by A6,A19,Th29,A3;
end;
suppose
A20: m <> 0;
set sm = StepWhile>0(a,I,p,s).m,
pm = p +* while>0(a,I);
set sm1 = Initialize sm,
pm1 = pm +* while>0(a,I);
consider i being Nat such that
A21: m=i+1 by A20,NAT_1:6;
reconsider i as Element of NAT by ORDINAL1:def 12;
set si = StepWhile>0(a,I,p,s).i,
psi = p +* while>0(a,I);
A22: sm = Comput(psi +* while>0(a,I),(Initialize si),
(LifeSpan(psi +* I,Initialize si) + 2)) by A21,SCMFSA_9:def 5;
m=i+1 by A21;
then consider n being Nat such that
A23: sm = Comput(P,S,n) by A17;
i < m by A21,NAT_1:13;
then
A24: si.a > 0 by A7;
then I is_halting_on si,psi by A8;
then
A25: IC sm = 0 by A22,A24,SCMFSA_9:42;
A26: IC sm1 = IC Start-At(0,SCM+FSA) by A15,FUNCT_4:13
.= IC sm by A25,FUNCOP_1:72;
DataPart sm1 = DataPart sm by MEMSTR_0:79;
then
A27: sm1 = sm by A26,MEMSTR_0:78;
while>0(a,I) is_halting_on sm,pm by A6,SCMFSA_9:38;
then pm1 halts_on sm1 by SCMFSA7B:def 7;
then consider j being Nat such that
A28: CurInstr(pm,Comput(pm,sm,j)) = halt SCM+FSA by A27;
A29: Comput(P,S,n+j) = Comput(P,Comput(P,S,n),j) by EXTPRO_1:4;
CurInstr(P,Comput(P,S,n+j)) = halt SCM+FSA by A23,A28,A29;
then
A30: Comput(P,S,LifeSpan(P,S)) = Comput(P,S,n+j) by EXTPRO_1:24
.= Comput(P,sm,j) by A23,EXTPRO_1:4
.= Comput(pm,sm,LifeSpan(pm,sm)) by A28,EXTPRO_1:24;
Start-At(0,SCM+FSA) c= sm by A27,FUNCT_4:25;
then sm is 0-started by MEMSTR_0:29;
hence thesis by A6,A30,Th29,A3;
end;
end;
uniqueness
proof
let it1, it2 be Nat;
given k1 being Nat such that
A31: it1 = k1 and
A32: (StepWhile>0(a,I,p,s).k1).a <= 0 & for i being Nat st
( StepWhile>0(a,I,p,s).i).a <= 0 holds k1 <= i and
DataPart(Comput(p +* while>0(a,I),(Initialize s),
(LifeSpan(p +* while>0(a,I),Initialize s)))) =
DataPart StepWhile>0(a,I,p,s).k1;
given k2 being Nat such that
A33: it2 = k2 and
A34: (StepWhile>0(a,I,p,s).k2).a <= 0 & for i being Nat st
( StepWhile>0(a,I,p,s).i).a <= 0 holds k2 <= i and
DataPart(Comput(p +* while>0(a,I),(Initialize s),
(LifeSpan(p +* while>0(a,I),Initialize s))))
= DataPart StepWhile>0(a,I,p,s).k2;
k1 <= k2 & k2 <= k1 by A32,A34;
hence thesis by A31,A33,XXREAL_0:1;
end;
end;
theorem Th35: :: IE_while_le0:
s.intloc 0 = 1 & s.a <= 0
implies DataPart IExec(while>0(a,I),p,s) = DataPart s
proof
assume that
A1: s.intloc 0 = 1 and
A2: s.a <= 0;
set WH = while>0(a, I);
set Is = Initialized s, pds = p +* WH;
A3: while>0(a,I) c= pds by FUNCT_4:25;
A4: Is = Initialize Is by MEMSTR_0:44;
Is.a = s.a by SCMFSA_M:37;
then WH is_halting_on Is,p by A2,SCMFSA_9:38;
then
A5: pds halts_on Is by A4,SCMFSA7B:def 7;
A6: Is.a = s.a by SCMFSA_M:37;
thus DataPart IExec(WH,p,s)
= DataPart Result(p +* WH,Initialized s) by SCMFSA6B:def 1
.= DataPart Comput(pds,Is,LifeSpan(pds,Is)) by A5,EXTPRO_1:23
.= DataPart Initialized s by A2,A6,Th29,A3
.= DataPart s by A1,SCMFSA_M:19;
end;
theorem Th36: :: IE_while_gt0:
for I being really-closed MacroInstruction of SCM+FSA holds
(ProperBodyWhile>0 a,I,Initialized s,p or I is parahalting) &
WithVariantWhile>0 a,I,Initialized s,p implies DataPart IExec(while>0(a,I),p,s)
= DataPart
StepWhile>0(a,I,p,Initialized s).ExitsAtWhile>0(a,I,p,Initialized s)
proof let I be really-closed MacroInstruction of SCM+FSA;
set Ins = NAT;
set WH = while>0(a, I);
set Is = Initialized s, pds = p +* WH;
A1: Is = Initialize Is by MEMSTR_0:44;
assume
A2: ( ProperBodyWhile>0 a,I,Initialized s,p or I is parahalting)&
WithVariantWhile>0 a,I,Initialized s,p;
then
A3: ex k being Nat st ExitsAtWhile>0(a,I,p,Is) = k &
(StepWhile>0(a,I,p,Is).k).a <= 0 &
( for i being Nat st ( StepWhile>0(a,I,p,Is).i)
.a <= 0 holds k <= i)& DataPart (Comput(p +* while>0(a,I),
Initialize Is, LifeSpan(p +* while>0(a,I),Initialize Is)))
= DataPart StepWhile>0(a,I,p,Is).k
by Def6;
WH is_halting_on Is,p by A2,Th27,Th28;
then
A4: pds halts_on Is by A1,SCMFSA7B:def 7;
thus DataPart IExec(WH,p,s)
= DataPart Result(p +* WH,Initialized s) by SCMFSA6B:def 1
.= DataPart StepWhile>0(a,I,p,Is).ExitsAtWhile>0(a,I,p,Is) by A1,A4,A3,
EXTPRO_1:23;
end;
theorem Th37:
StepWhile>0(a,I,p,s).k.a <= 0 implies for n being Nat
st k <= n
holds DataPart StepWhile>0(a,I,p,s).n = DataPart StepWhile>0(a,I,p,s).k
proof
set SW = StepWhile>0(a,I,p,s),
PW = p +* while>0(a,I);
defpred P[Nat] means k <= $1 implies DataPart SW.$1 = DataPart SW.k;
assume
A1: StepWhile>0(a,I,p,s).k.a <= 0;
A2: now
let n be Nat such that
A3: P[n];
thus P[n+1]
proof
assume
A4: k <= n+1;
per cases by A4,NAT_1:8;
suppose
A5: k <= n;
then SW.n.a <= 0 by A1,A3,SCMFSA_M:2;
hence thesis by A3,A5,Th31;
end;
suppose
k = n+1;
hence thesis;
end;
end;
end;
A6: P[0];
thus for n being Nat holds P[n] from NAT_1:sch 2(A6, A2 );
end;
theorem
for I being really-closed MacroInstruction of SCM+FSA holds
DataPart s1 = DataPart s2 & ProperBodyWhile>0 a,I,s1,p1 implies
ProperBodyWhile>0 a,I,s2,p2
proof let I be really-closed MacroInstruction of SCM+FSA;
assume that
A1: DataPart s1 = DataPart s2 and
A2: ProperBodyWhile>0 a,I,s1,p1;
let k be Nat such that
A3: StepWhile>0(a,I,p2,s2).k.a > 0;
A4: DataPart StepWhile>0(a,I,p2,s2).k
= DataPart StepWhile>0(a,I,p1,s1).k by A1,A2,Th34;
then StepWhile>0(a,I,p1,s1).k.a > 0 by A3,SCMFSA_M:2;
then I is_halting_on StepWhile>0(a,I,p1,s1).k, p1+*while>0(a,I) by A2;
hence thesis by A4,SCMFSA8B:5;
end;
Lm7:
for I being really-closed Program of SCM+FSA holds
s.intloc 0 = 1 implies (I is_halting_on s,p iff
I is_halting_on Initialized s,p)
proof let I be really-closed Program of SCM+FSA;
assume s.intloc 0 = 1;
then DataPart Initialized s = DataPart s by SCMFSA_M:19;
hence thesis by SCMFSA8B:5;
end;
theorem Th39:
for Ig being good really-closed MacroInstruction of SCM+FSA holds
s.intloc 0 = 1 & ProperBodyWhile>0 a,Ig,s,p &
WithVariantWhile>0 a, Ig, s, p
implies for i, j st i <> j & i <= ExitsAtWhile>0(a,Ig,p,s) & j <=
ExitsAtWhile>0(a,Ig,p,s) holds StepWhile>0(a,Ig,p,s).i <> StepWhile>0(a,Ig,p,s)
.j & DataPart StepWhile>0(a,Ig,p,s).i <> DataPart StepWhile>0(a,Ig,p,s).j
proof let Ig be good really-closed MacroInstruction of SCM+FSA;
set I = Ig;
assume that
A1: s.intloc 0 = 1 and
A2: ProperBodyWhile>0 a,I,s,p and
A3: WithVariantWhile>0 a,I,s,p;
set SW = StepWhile>0(a,I,p,s),
PW = p +* while>0(a,I);
consider K being Nat such that
A4: ExitsAtWhile>0(a,I,p,s) = K and
A5: SW.K.a <= 0 and
A6: for i being Nat st SW.i.a <= 0 holds K <= i and
DataPart Comput(p +* while>0(a,I),(Initialize s),
(LifeSpan(p +* while>0(a,I),s +* (
Start-At(0,SCM+FSA))))) = DataPart SW.K by A2,A3,Def6;
consider f being Function of product the_Values_of SCM+FSA, NAT such
that
A7: for k being Nat holds f.(SW.(k+1)) < f.(SW.k) or SW.k.a
<= 0 by A3;
A8: for i, j being Nat st i < j & i <= K & j <= K holds DataPart
SW.i <> DataPart SW.j
proof
let i, j be Nat such that
A9: i < j and
i <= K and
A10: j <= K;
per cases by A10,XXREAL_0:1;
suppose
A11: j = K;
assume DataPart SW.i = DataPart SW.j;
then SW.i.a <= 0 by A5,A11,SCMFSA_M:2;
hence contradiction by A6,A9,A11;
end;
suppose
A12: j < K;
defpred X[Nat] means j+$1 <= K implies DataPart SW.(i+$1) =
DataPart SW.(j+$1);
A13: for k being Nat st X[k] holds X[k+1]
proof
let k be Nat such that
A14: j+k <= K implies DataPart SW.(i+k) = DataPart SW.(j+k) and
A15: j+(k+1) <= K;
A16: SW.(j+k).intloc 0 = 1 by A1,A2,Th33;
A17: j+k < (j+k)+1 by XREAL_1:29;
then
A18: j+k < K by A15,XXREAL_0:2;
then
A19: SW.(j+k).a > 0 by A6;
A20: I is_halting_on SW.(j+k), PW by A2,A19;
then
A21: I is_halting_on Initialized SW.(j+k), PW by A16,Lm7;
A22: SW.(i+k).intloc 0 = 1 by A1,A2,Th33;
A23: SW.(i+k).a > 0
proof
assume not thesis;
then
A24: K <= i+k by A6;
i+k < j+k by A9,XREAL_1:6;
hence contradiction by A18,A24,XXREAL_0:2;
end;
I is_halting_on SW.(i+k),PW by A2,A23;
then
A25: I is_halting_on Initialized SW.(i+k),PW by A22,Lm7;
thus DataPart SW.(i+(k+1)) = DataPart SW.(i+k+1)
.= DataPart IExec(I,PW,SW.(i+k)) by A22,A23,A25,Th32
.= DataPart IExec(I,PW,SW.(j+k))
by A14,A15,A17,A16,A20,SCMFSA8C:20,XXREAL_0:2
.= DataPart SW.(j+k+1) by A16,A19,A21,Th32
.= DataPart SW.(j+(k+1));
end;
consider p being Element of NAT such that
A26: K = j+p and
1 <= p by A12,FINSEQ_4:84;
assume DataPart SW.i = DataPart SW.j;
then
A27: X[0];
for k being Nat holds X[k] from NAT_1:sch 2(A27, A13);
then DataPart SW.(i+p) = DataPart SW.K by A26;
then
A28: SW.(i+p).a <= 0 by A5,SCMFSA_M:2;
i+p < K by A9,A26,XREAL_1:6;
hence contradiction by A6,A28;
end;
end;
A29: for i, j being Nat st i < j & i <= K & j <= K holds SW.i <>
SW.j
proof
let i, j be Nat;
assume that
A30: i < j and
i <= K and
A31: j <= K;
defpred X[Nat] means i < $1 & $1 <= j implies f.(SW.$1) < f.(SW.i);
A32: i < K by A30,A31,XXREAL_0:2;
A33: for k being Nat st X[k] holds X[k+1]
proof
let k be Nat such that
A34: i < k & k <= j implies f.(SW.k) < f.(SW.i) and
A35: i < k+1 and
A36: k+1 <= j;
A37: i <= k by A35,NAT_1:13;
per cases by A37,XXREAL_0:1;
suppose
A38: i = k;
not SW.i.a <= 0 by A6,A32;
hence thesis by A7,A38;
end;
suppose
A39: i < k;
A40: k < j by A36,NAT_1:13;
now
assume SW.k.a <= 0;
then K <= k by A6;
hence contradiction by A31,A40,XXREAL_0:2;
end;
then f.(SW.(k+1)) < f.(SW.k) by A7;
hence thesis by A34,A36,A39,NAT_1:13,XXREAL_0:2;
end;
end;
assume
A41: SW.i = SW.j;
A42: X[0];
for k being Nat holds X[k] from NAT_1:sch 2(A42, A33 );
hence contradiction by A30,A41;
end;
given i, j being Nat such that
A43: i <> j and
A44: i <= ExitsAtWhile>0(a,I,p,s) & j <= ExitsAtWhile>0(a,I,p,s) &( SW.i
= SW. j or DataPart SW.i = DataPart SW.j);
i < j or j < i by A43,XXREAL_0:1;
hence contradiction by A4,A29,A8,A44;
end;
::$CD
theorem Th40:
for Ig being good really-closed MacroInstruction of SCM+FSA holds
s.intloc 0 = 1 & ProperBodyWhile>0 a,Ig,s,p &
WithVariantWhile>0 a, Ig, s, p
implies ex f being Function of product the_Values_of SCM+FSA, NAT
st f is on_data_only & for k being Nat
holds f.(StepWhile>0(a,Ig,p,s).(k+1)) < f.(StepWhile>0(a,Ig,p,s).k) or
StepWhile>0(a,Ig,p,s).k.a <= 0
proof let Ig be good really-closed MacroInstruction of SCM+FSA;
set I = Ig;
assume that
A1: s.intloc 0 = 1 and
A2: ProperBodyWhile>0 a,I,s,p and
A3: WithVariantWhile>0 a,I,s,p;
set SW = StepWhile>0(a,I,p,s),
PW = p +* while>0(a,I);
consider K being Nat such that
A4: ExitsAtWhile>0(a,I,p,s) = K and
A5: SW.K.a <= 0 and
for i being Nat st SW.i.a <= 0 holds K <= i and
DataPart Comput(p +* while>0(a,I),(Initialize s),
(LifeSpan(p +* while>0(a,I),Initialize s)))
= DataPart StepWhile>0(a,I,p,s).K by A2,A3,Def6;
consider g being Function of product the_Values_of SCM+FSA, NAT such
that
A6: for k being Nat holds g.(SW.(k+1)) < g.(SW.k) or SW.k.a
<= 0 by A3;
defpred P[State of SCM+FSA, set] means (ex k being Nat st k <= K
& DataPart $1 = DataPart SW.k & $2 = g.(SW.k)) or
not (ex k being Nat st k <= K & DataPart $1 = DataPart SW.k) & $2 = 0;
A7: for x being Element of product the_Values_of SCM+FSA
ex y being Element of NAT st P[x,y]
proof
let x be Element of product the_Values_of SCM+FSA;
per cases;
suppose
ex k being Nat st k <= K & DataPart x = DataPart SW.k;
then consider k being Nat such that
A8: k <= K & DataPart x = DataPart SW.k;
take g.(SW.k);
thus thesis by A8;
end;
suppose
A9: not ex k being Nat st k <= K & DataPart x = DataPart
SW.k;
take 0;
thus thesis by A9;
end;
end;
consider f being Function of product the_Values_of SCM+FSA, NAT such
that
A10: for x being Element of product the_Values_of SCM+FSA
holds P[x,f.x]
from FUNCT_2:sch 3(A7);
take f;
hereby
let s1, s2 such that
A11: DataPart s1 = DataPart s2;
reconsider ss1=s1, ss2=s2 as
Element of product the_Values_of SCM+FSA by CARD_3:107;
( P[ss1, f.ss1])& P[ss2, f.ss2] by A10;
hence f.s1 = f.s2 by A1,A2,A3,A4,A11,Th39;
end;
let k be Nat;
per cases;
suppose
A12: k < K;
then
A13: k+1 <= K by NAT_1:13;
then consider kk1 being Nat such that
A14: kk1 <= K & DataPart SW.(k+1) = DataPart SW.kk1 and
A15: f.(SW.(k+1))=g.(SW.kk1) by A10;
A16: k+1 = kk1 by A1,A2,A3,A4,A13,A14,Th39;
consider kk being Nat such that
A17: kk <= K & DataPart SW.k = DataPart SW.kk and
A18: f.(SW.k) = g.(SW.kk) by A10,A12;
k = kk by A1,A2,A3,A4,A12,A17,Th39;
hence thesis by A6,A18,A15,A16;
end;
suppose
K <= k;
then DataPart SW.K = DataPart SW.k by A5,Th37;
hence thesis by A5,SCMFSA_M:2;
end;
end;
theorem
for Ig being good really-closed MacroInstruction of SCM+FSA holds
s1.intloc 0 = 1 & DataPart s1 = DataPart s2 &
ProperBodyWhile>0 a,Ig,s1,p1 & WithVariantWhile>0 a,Ig,s1,p1
implies WithVariantWhile>0 a,Ig,s2,p2
proof let Ig be good really-closed MacroInstruction of SCM+FSA;
set I = Ig;
assume that
A1: s1.intloc 0 = 1 and
A2: DataPart s1 = DataPart s2 and
A3: ProperBodyWhile>0 a,I,s1,p1 and
A4: WithVariantWhile>0 a,I,s1,p1;
set SW1 = StepWhile>0(a,I,p1,s1);
consider f being Function of product the_Values_of SCM+FSA, NAT such
that
A5: f is on_data_only and
A6: for k being Nat holds (f.(SW1.(k+1)) < f.(SW1.k) or SW1.k
.a <= 0 ) by A1,A3,A4,Th40;
take f;
let k be Nat;
set SW2 = StepWhile>0(a,I,p2,s2);
DataPart SW1.(k+1) = DataPart SW2.(k+1) by A2,A3,Th34;
then
A7: f.(SW1.(k+1)) = f.(SW2.(k+1)) by A5;
A8: DataPart SW1.k = DataPart SW2.k by A2,A3,Th34;
then
A9: SW1.k.a = SW2.k.a by SCMFSA_M:2;
f.(SW1.k) = f.(SW2.k) by A5,A8;
hence thesis by A6,A9,A7;
end;
begin :: fusc using while>0, bottom-up
definition
let N, result be Int-Location;
func Fusc_macro ( N, result ) -> MacroInstruction of SCM+FSA equals
SubFrom(result,
result) ";" ((1-stRWNotIn {N, result}) := intloc 0) ";" ((2-ndRWNotIn {N,
result}) := N) ";" while>0 ( 2-ndRWNotIn {N, result}, (3-rdRWNotIn {N, result})
:= 2 ";" Divide(2-ndRWNotIn {N, result}, 3-rdRWNotIn {N, result}) ";"
if=0 ( 3-rdRWNotIn {N, result},
Macro AddTo(1-stRWNotIn {N, result}, result),
Macro AddTo(result, 1-stRWNotIn {N, result})
qua MacroInstruction of SCM+FSA
)
);
correctness;
end;
:: set next = 1-stRWNotIn {N, result};
:: set aux = 2-ndRWNotIn {N, result};
:: set rem2 = 3-rdRWNotIn {N, result};
:: while and if do not allocate memory, no need to save anything
registration let N,R be read-write Int-Location;
cluster Fusc_macro(N,R) -> really-closed;
coherence;
end;
theorem
for N, result being read-write Int-Location st N <> result for n being
Element of NAT st n = s.N
holds IExec(Fusc_macro(N,result),p,s).result = Fusc n
& IExec(Fusc_macro(N,result),p,s).N = n
proof
let N, result be read-write Int-Location such that
A1: N <> result;
set i0 = SubFrom(result, result);
set rem2 = 3-rdRWNotIn {N, result};
set aux = 2-ndRWNotIn {N, result};
set next = 1-stRWNotIn {N, result};
set I3i0 = rem2 := 2;
set I3i1 = Divide(aux, rem2);
set I3I2I0 = Macro AddTo(next, result);
set I3I2I1 = Macro AddTo(result, next);
reconsider I3I2 = if=0 ( rem2, I3I2I0, I3I2I1 )
as really-closed Program of SCM+FSA;
reconsider I = I3i0 ";" I3i1 ";" I3I2 as
really-closed MacroInstruction of SCM+FSA;
let n be Element of NAT such that
A2: n = s.N;
A3: next <> rem2 by SCMFSA_M:26;
A4: aux <> next by SCMFSA_M:26;
set I3 = while>0 ( aux, I );
deffunc U(Element of product the_Values_of SCM+FSA) = |.$1.aux.|;
set i2 = aux := N;
set i1 = next := intloc 0;
set t = IExec(i0 ";" i1 ";" i2,p,s),
q = p;
set It = Initialized t;
set SWt = StepWhile>0(aux,I,q,It),
PWt = q +* while>0(aux,I);
defpred X[Nat] means ex au, ne, re being Nat st SWt.$1
.aux = au & SWt.$1.next = ne & SWt.$1.result = re & SWt.$1.N = n & Fusc n = ne
* Fusc au + re * Fusc (au+1);
consider f being Function of product the_Values_of SCM+FSA,NAT such
that
A5: for x being Element of product the_Values_of SCM+FSA holds f.x
= U(x) from FUNCT_2:sch 4;
A6: N in {N, result} by TARSKI:def 2;
then
A7: N <> next by SCMFSA_M:25;
A8: result in {N, result} by TARSKI:def 2;
then
A9: aux <> result by SCMFSA_M:25;
A10: result <> rem2 by A8,SCMFSA_M:25;
A11: next <> result by A8,SCMFSA_M:25;
A12: N <> rem2 by A6,SCMFSA_M:25;
A13: N <> aux by A6,SCMFSA_M:25;
A14: aux <> rem2 by SCMFSA_M:26;
A15: for u being State of SCM+FSA,h st
ex au, ne, re being Nat st u
.aux = au & u.next = ne & u.result = re & u.N = n & Fusc n = ne * Fusc au + re
* Fusc (au+1) ex au1, ne1, re1 being Nat
st IExec(I,h,u).aux = au1 &
IExec(I,h,u).next = ne1 & IExec(I,h,u).result = re1 & IExec(I,h,u).N = n &
Fusc n
= ne1 * Fusc au1 + re1 * Fusc (au1+1) & au1 = u.aux div 2
proof
let u be State of SCM+FSA, h;
given au, ne, re being Nat such that
A16: u.aux = au and
A17: u.next = ne and
A18: u.result = re and
A19: u.N = n and
A20: Fusc n = ne * Fusc au + re * Fusc (au+1);
A21: (Initialized IExec(I3i0 ";" I3i1,h,u)).next = IExec(I3i0 ";" I3i1,h,u).
next by SCMFSA_M:37
.= Exec(I3i1, IExec(I3i0,h,u)).next by SCMFSA6C:6
.= IExec(I3i0,h,u).next by A4,A3,SCMFSA_2:67
.= ne by A17,SCMFSA7B:3,SCMFSA_M:26;
A22: (Initialized IExec(I3i0 ";" I3i1,h,u)).aux = IExec(I3i0 ";" I3i1,h,u).
aux by SCMFSA_M:37
.= Exec(I3i1, IExec(I3i0,h,u)).aux by SCMFSA6C:6
.= IExec(I3i0,h,u).aux div IExec(I3i0,h,u).rem2 by A14,SCMFSA_2:67
.= u.aux div IExec(I3i0,h,u).rem2 by SCMFSA7B:3,SCMFSA_M:26
.= u.aux div 2 by SCMFSA7B:3;
A23: (Initialized IExec(I3i0 ";" I3i1,h,u)).result = IExec(I3i0 ";" I3i1,h,u)
.result by SCMFSA_M:37
.= Exec(I3i1, IExec(I3i0,h,u)).result by SCMFSA6C:6
.= IExec(I3i0,h,u).result by A9,A10,SCMFSA_2:67
.= re by A10,A18,SCMFSA7B:3;
A24: (Initialized IExec(I3i0 ";" I3i1,h,u)).N = IExec(I3i0 ";" I3i1,h,u).N by
SCMFSA_M:37
.= Exec(I3i1, IExec(I3i0,h,u)).N by SCMFSA6C:6
.= IExec(I3i0,h,u).N by A12,A13,SCMFSA_2:67
.= n by A12,A19,SCMFSA7B:3;
A25: IExec(I3i0 ";" I3i1,h,u).rem2 = Exec(I3i1, IExec(I3i0,h,u)).rem2 by
SCMFSA6C:6
.= IExec(I3i0,h,u).aux mod IExec(I3i0,h,u).rem2 by SCMFSA_2:67
.= u.aux mod IExec(I3i0,h,u).rem2 by SCMFSA7B:3,SCMFSA_M:26
.= u.aux mod 2 by SCMFSA7B:3;
per cases;
suppose
A26: au is even;
reconsider ne1 = ne + re as Element of NAT by ORDINAL1:def 12;
reconsider au1 = u.aux div 2 as Element of NAT by A16,INT_1:3,55;
take au1, ne1, re;
consider k being Nat such that
A27: au = 2*k by A26,ABIAN:def 2;
A28: u.aux mod 2 = (2*k + 0) mod 2 by A16,A27
.= 0 mod 2 by NAT_D:21
.= 0 by NAT_D:26;
IExec(I,h,u).aux = IExec(I3I2,h,IExec(I3i0 ";" I3i1,h,u)).aux
by SCMFSA6C:1
.= IExec(I3I2I0,h,IExec(I3i0 ";" I3i1,h,u)).aux by A25,A28,SCMFSA8B:18
.= (Exec(AddTo(next, result),
Initialized IExec(I3i0 ";" I3i1,h,u))).aux
by SCMFSA6C:5
.= u.aux div 2 by A4,A22,SCMFSA_2:64;
hence IExec(I,h,u).aux = au1;
thus IExec(I,h,u).next = IExec(I3I2,h,IExec(I3i0 ";" I3i1,h,u)).next by
SCMFSA6C:1
.= IExec(I3I2I0,h,IExec(I3i0 ";" I3i1,h,u)).next by A25,A28,SCMFSA8B:18
.= (Exec(AddTo(next, result),
Initialized IExec(I3i0 ";" I3i1,h,u))).next by SCMFSA6C:5
.= ne1 by A21,A23,SCMFSA_2:64;
thus IExec(I,h,u).result = IExec(I3I2,h,IExec(I3i0 ";" I3i1,h,u)).result
by SCMFSA6C:1
.= IExec(I3I2I0,h,IExec(I3i0 ";" I3i1,h,u)).result
by A25,A28,SCMFSA8B:18
.= (Exec(AddTo(next, result),
Initialized IExec(I3i0 ";" I3i1,h,u))).result by SCMFSA6C:5
.= re by A11,A23,SCMFSA_2:64;
thus IExec(I,h,u).N = IExec(I3I2,h,IExec(I3i0 ";" I3i1,h,u)).N
by SCMFSA6C:1
.= IExec(I3I2I0,h,IExec(I3i0 ";" I3i1,h,u)).N by A25,A28,SCMFSA8B:18
.= (Exec(AddTo(next, result),
Initialized IExec(I3i0 ";" I3i1,h,u))).N by SCMFSA6C:5
.= n by A7,A24,SCMFSA_2:64;
au1 = k by A16,A27,NAT_D:18;
hence Fusc n = ne1 * Fusc au1 + re * Fusc (au1+1) by A20,A27,PRE_FF:20;
thus thesis;
end;
suppose
A29: au is odd;
reconsider re1 = ne + re as Element of NAT by ORDINAL1:def 12;
reconsider au1 = u.aux div 2 as Element of NAT by A16,INT_1:3,55;
take au1, ne, re1;
consider k being Nat such that
A30: au = 2*k +1 by A29,ABIAN:9;
A31: u.aux mod 2 = 1 mod 2 by A16,A30,NAT_D:21
.= 1 by NAT_D:24;
IExec(I,h,u).aux = IExec(I3I2,h,IExec(I3i0 ";" I3i1,h,u)).aux
by SCMFSA6C:1
.= IExec(I3I2I1,h,IExec(I3i0 ";" I3i1,h,u)).aux by A25,A31,SCMFSA8B:18
.= (Exec(AddTo(result, next),
Initialized IExec(I3i0 ";" I3i1,h,u))).aux
by SCMFSA6C:5
.= u.aux div 2 by A9,A22,SCMFSA_2:64;
hence IExec(I,h,u).aux = au1;
thus IExec(I,h,u).next = IExec(I3I2,h,IExec(I3i0 ";" I3i1,h,u)).next by
SCMFSA6C:1
.= IExec(I3I2I1,h,IExec(I3i0 ";" I3i1,h,u)).next by A25,A31,SCMFSA8B:18
.= (Exec(AddTo(result, next),
Initialized IExec(I3i0 ";" I3i1,h,u))).
next by SCMFSA6C:5
.= ne by A11,A21,SCMFSA_2:64;
thus IExec(I,h,u).result
= IExec(I3I2,h,IExec(I3i0 ";" I3i1,h,u)).result by SCMFSA6C:1
.= IExec(I3I2I1,h,IExec(I3i0 ";" I3i1,h,u)).result
by A25,A31,SCMFSA8B:18
.= (Exec(AddTo(result, next),
Initialized IExec(I3i0 ";" I3i1,h,u))).
result by SCMFSA6C:5
.= re1 by A21,A23,SCMFSA_2:64;
thus IExec(I,h,u).N = IExec(I3I2,h,IExec(I3i0 ";" I3i1,h,u)).N
by SCMFSA6C:1
.= IExec(I3I2I1,h,IExec(I3i0 ";" I3i1,h,u)).N by A25,A31,SCMFSA8B:18
.= (Exec(AddTo(result, next),
Initialized IExec(I3i0 ";" I3i1,h,u))).N by SCMFSA6C:5
.= n by A1,A24,SCMFSA_2:64;
au1 = 2*k div 2 by A16,A30,NAT_2:26
.= k by NAT_D:18;
hence Fusc n = ne * Fusc au1 + re1 * Fusc (au1+1) by A20,A30,PRE_FF:19;
thus thesis;
end;
end;
A32: It.intloc 0 = 1 by SCMFSA_M:9;
A33: for k being Nat st X[k] holds X[k+1]
proof
let k be Nat;
given au, ne, re being Nat such that
A34: SWt.k.aux = au and
A35: SWt.k.next = ne and
A36: SWt.k.result = re and
A37: SWt.k.N = n and
A38: Fusc n = ne * Fusc au + re * Fusc (au+1);
A39: SWt.k.intloc 0 = 1 by A32,Th33;
per cases;
suppose
A40: SWt.k.aux > 0;
consider au1, ne1, re1 being Nat such that
A41: IExec(I,PWt,SWt.k).aux = au1 and
A42: IExec(I,PWt,SWt.k).next = ne1 and
A43: IExec(I,PWt,SWt.k).result = re1 and
A44: IExec(I,PWt,SWt.k).N = n and
A45: Fusc n = ne1 * Fusc au1 + re1 * Fusc (au1+1) and
au1 = SWt.k.aux div 2 by A15,A34,A35,A36,A37,A38;
take au1, ne1, re1;
A46: DataPart SWt.(k+1) = DataPart IExec(I,PWt,SWt.k) by A39,A40,Th32;
hence SWt.(k+1).aux = au1 by A41,SCMFSA_M:2;
thus SWt.(k+1).next = ne1 by A46,A42,SCMFSA_M:2;
thus SWt.(k+1).result = re1 by A46,A43,SCMFSA_M:2;
thus SWt.(k+1).N = n by A46,A44,SCMFSA_M:2;
thus thesis by A45;
end;
suppose
A47: SWt.k.aux <= 0;
take au, ne, re;
A48: DataPart SWt.(k+1) = DataPart SWt.k by A47,Th31;
hence SWt.(k+1).aux = au by A34,SCMFSA_M:2;
thus SWt.(k+1).next = ne by A35,A48,SCMFSA_M:2;
thus SWt.(k+1).result = re by A36,A48,SCMFSA_M:2;
thus SWt.(k+1).N = n by A37,A48,SCMFSA_M:2;
thus thesis by A38;
end;
end;
t.intloc 0 = 1 by SCMFSA6B:11;
then
A49: DataPart t = DataPart It by SCMFSA_M:19;
A50: X[0]
proof
take au = n;
take ne = 1;
take re = 0;
A51: SWt.0 = It by SCMFSA_9:def 5;
hence SWt.0.aux = t.aux by A49,SCMFSA_M:2
.= Exec(i2, IExec(i0 ";" i1,p,s)).aux by SCMFSA6C:6
.= IExec(i0 ";" i1,p,s).N by SCMFSA_2:63
.= Exec(i1, Exec(i0, Initialized s)).N by SCMFSA6C:8
.= Exec(i0, Initialized s).N by A7,SCMFSA_2:63
.= (Initialized s).N by A1,SCMFSA_2:65
.= au by A2,SCMFSA_M:37;
thus SWt.0.next = t.next by A49,A51,SCMFSA_M:2
.= Exec(i2, IExec(i0 ";" i1,p,s)).next by SCMFSA6C:6
.= IExec(i0 ";" i1,p,s).next by A4,SCMFSA_2:63
.= Exec(i1, Exec(i0, Initialized s)).next by SCMFSA6C:8
.= Exec(i0, Initialized s).intloc 0 by SCMFSA_2:63
.= (Initialized s).intloc 0 by SCMFSA_2:65
.= ne by SCMFSA_M:9;
thus SWt.0.result = t.result by A49,A51,SCMFSA_M:2
.= Exec(i2, IExec(i0 ";" i1,p,s)).result by SCMFSA6C:6
.= IExec(i0 ";" i1,p,s).result by A9,SCMFSA_2:63
.= Exec(i1, Exec(i0, Initialized s)).result by SCMFSA6C:8
.= Exec(i0, Initialized s).result by A11,SCMFSA_2:63
.= (Initialized s).result - (Initialized s).result by SCMFSA_2:65
.= re;
thus SWt.0.N = t.N by A49,A51,SCMFSA_M:2
.= Exec(i2, IExec(i0 ";" i1,p,s)).N by SCMFSA6C:6
.= IExec(i0 ";" i1,p,s).N by A13,SCMFSA_2:63
.= Exec(i1, Exec(i0, Initialized s)).N by SCMFSA6C:8
.= Exec(i0, Initialized s).N by A7,SCMFSA_2:63
.= (Initialized s).N by A1,SCMFSA_2:65
.= n by A2,SCMFSA_M:37;
thus thesis;
end;
A52: for k being Nat holds X[k] from NAT_1:sch 2(A50, A33);
for k being Nat holds f.(SWt.(k+1)) < f.(SWt.k) or SWt.k.aux
<= 0
proof
let k be Nat;
consider au, ne, re being Nat such that
A53: SWt.k.aux = au and
A54: SWt.k.next = ne & SWt.k.result = re & SWt.k.N = n & Fusc n = ne *
Fusc au + re * Fusc (au+1) by A52;
A55: f.(SWt.k) = |.SWt.k.aux.| by A5
.= au by A53,ABSVALUE:def 1;
now
consider au1, ne1, re1 being Nat such that
A56: IExec(I,PWt,SWt.k).aux = au1 and
IExec(I,PWt,SWt.k).next = ne1 and
IExec(I,PWt,SWt.k).result = re1 and
IExec(I,PWt,SWt.k).N = n and
Fusc n = ne1 * Fusc au1 + re1 * Fusc (au1+1) and
A57: au1 = SWt.k.aux div 2 by A15,A53,A54;
assume
A58: au > 0;
SWt.k.intloc 0 = 1 by A32,Th33;
then DataPart SWt.(k+1) = DataPart IExec(I,PWt,SWt.k) by A53,A58,Th32;
then
A59: SWt.(k+1).aux = au1 by A56,SCMFSA_M:2;
f.(SWt.(k+1)) = |.SWt.(k+1).aux.| by A5
.= au1 by A59,ABSVALUE:def 1;
hence f.(SWt.(k+1)) < f.(SWt.k) by A53,A55,A58,A57,INT_1:56;
end;
hence thesis by A53;
end;
then
A60: WithVariantWhile>0 aux,I,It,q;
then consider k being Nat such that
A61: ExitsAtWhile>0(aux,I,q,It) = k and
A62: (StepWhile>0(aux,I,q,It).k).aux <= 0 and
for i being Nat st SWt.i.aux <= 0 holds k <= i and
DataPart (Comput(q +* while>0(aux,I),(Initialize It),
(LifeSpan(q +* while>0(aux,I),Initialize It))))
= DataPart StepWhile>0(aux,I,q,It).k
by Def6;
A63: DataPart IExec(I3,q,t) = DataPart SWt.k by A60,A61,Th36;
consider au, ne, re being Nat such that
A64: SWt.k.aux = au and
SWt.k.next = ne and
A65: SWt.k.result = re and
A66: SWt.k.N = n and
A67: Fusc n = ne * Fusc au + re * Fusc (au+1) by A52;
A68: au = 0 by A62,A64;
I3 is_halting_on It,q by A60,Th28;
then
A69: I3 is_halting_on t,q by A49,SCMFSA8B:5;
hence IExec(Fusc_macro(N,result),p,s).result = IExec(I3,q,t).result by
SFMASTR1:7
.= Fusc n by A65,A67,A68,A63,PRE_FF:15,SCMFSA_M:2;
thus IExec(Fusc_macro(N,result),p,s).N = IExec(I3,q,t).N by A69,SFMASTR1:7
.= n by A66,A63,SCMFSA_M:2;
end;
theorem
for I,J being MacroInstruction of SCM+FSA, a being Int-Location holds
UsedILoc if=0(a,I,J) = {a} \/ UsedILoc I \/ UsedILoc J &
UsedILoc if>0(a,I,J) = {a} \/ UsedILoc I \/ UsedILoc J
proof
let I,J be MacroInstruction of SCM+FSA, a be Int-Location;
set g1= a=0_goto (card J + 3), g2= Goto (card I + 1),
g3= a>0_goto (card J + 3), SS=Stop SCM+FSA;
thus UsedILoc if=0(a,I,J) =UsedILoc (g1 ";" J ";" g2 ";"I ";" SS)
.=UsedILoc (g1 ";" J ";" g2 ";"I) \/ {} by Th3,SF_MASTR:27
.=UsedILoc (g1 ";" J ";" g2) \/ UsedILoc I by SF_MASTR:27
.=UsedILoc (g1 ";" J) \/ UsedILoc g2 \/ UsedILoc I by SF_MASTR:27
.=UsedILoc (g1 ";" J) \/ {} \/ UsedILoc I by Th5
.=UsedIntLoc g1 \/ UsedILoc J \/ UsedILoc I by SF_MASTR:29
.={a} \/ UsedILoc J \/ UsedILoc I by SF_MASTR:16
.={a} \/ UsedILoc I \/ UsedILoc J by XBOOLE_1:4;
thus UsedILoc if>0(a,I,J) =UsedILoc (g3 ";" J ";" g2 ";"I ";" SS)
.=UsedILoc (g3 ";" J ";" g2 ";"I) \/ {} by Th3,SF_MASTR:27
.=UsedILoc (g3 ";" J ";" g2) \/ UsedILoc I by SF_MASTR:27
.=UsedILoc (g3 ";" J) \/ UsedILoc g2 \/ UsedILoc I by SF_MASTR:27
.=UsedILoc (g3 ";" J) \/ {} \/ UsedILoc I by Th5
.=UsedIntLoc g3 \/ UsedILoc J \/ UsedILoc I by SF_MASTR:29
.={a} \/ UsedILoc J \/ UsedILoc I by SF_MASTR:16
.={a} \/ UsedILoc I \/ UsedILoc J by XBOOLE_1:4;
end;
theorem
UsedILoc Times(b, I) = {b, intloc 0} \/ UsedILoc I
proof
thus UsedILoc Times(b, I)
= {b} \/ UsedILoc(I ";" SubFrom(b, intloc 0)) by Th24
.= {b} \/ (UsedILoc I \/ UsedIntLoc SubFrom(b, intloc 0)) by SF_MASTR:30
.= {b} \/ (UsedILoc I \/ {b, intloc 0}) by SF_MASTR:14
.= {b} \/ {b, intloc 0} \/ UsedILoc I by XBOOLE_1:4
.= {b, intloc 0} \/ UsedILoc I by ZFMISC_1:9;
end;
theorem
UsedI*Loc Times(b, I) = UsedI*Loc I
proof
thus UsedI*Loc Times(b, I)
= UsedI*Loc(I ";" SubFrom(b, intloc 0)) by Th25
.= UsedI*Loc I \/ UsedInt*Loc SubFrom(b, intloc 0) by SF_MASTR:46
.= UsedI*Loc I \/ {} by SF_MASTR:32
.= UsedI*Loc I;
end;
begin :: analogous to SFMASTR2
reserve s, s1, s2 for State of SCM+FSA,
p, p1 for Instruction-Sequence of SCM+FSA,
a, b for Int-Location,
d for read-write Int-Location,
f for FinSeq-Location,
I for MacroInstruction of SCM+FSA,
J for good MacroInstruction of SCM+FSA,
k, m, n for Nat;
set D = Data-Locations SCM+FSA;
:: registration
:: let I be good Program of SCM+FSA, a be Int-Location;
:: cluster Times(a, I) -> good;
:: coherence;
:: end;
definition let p;
let s be State of SCM+FSA, I be MacroInstruction of SCM+FSA,
a be read-write Int-Location;
func StepTimes(a, I, p, s) ->
sequence of product the_Values_of SCM+FSA equals
StepWhile>0(a,I ";" SubFrom(a, intloc 0), p, Initialized s);
correctness;
end;
reserve a for read-write Int-Location;
theorem
StepTimes(a,J,p,s).0.intloc 0 = 1
proof
set I = J;
set ST = StepTimes(a,I,p,s);
set Is = Initialized s;
thus ST.0.intloc 0 = Is.intloc 0 by SCMFSA_9:def 5
.= 1 by SCMFSA_M:9;
end;
theorem
StepTimes(a,J,p,s).0.a = s.a
proof
set I = J;
set ST = StepTimes(a,I,p,s);
set Is = Initialized s;
thus ST.0.a = Is.a by SCMFSA_9:def 5
.= s.a by SCMFSA_M:37;
end;
registration
let I be really-closed MacroInstruction of SCM+FSA, a be Int-Location;
cluster Times(a,I) -> really-closed;
coherence;
end;
theorem Th48:
for J being good really-closed MacroInstruction of SCM+FSA holds
J does not destroy a &
StepTimes(a,J,p,s).k.intloc 0 = 1 &
J is_halting_on StepTimes(a,J,p,s).k, p+*Times(a,J) implies
StepTimes(a,J,p,s).(k+1).intloc 0 = 1 &
(StepTimes(a,J,p,s).k.a > 0
implies StepTimes(a,J,p,s).(k+1).a = StepTimes(a,J,p,s).k.a - 1)
proof let J be good really-closed MacroInstruction of SCM+FSA;
set I = J;
assume that
A1: J does not destroy a and
A2: StepTimes(a,I,p,s).k.intloc 0 = 1 and
A3: I is_halting_on StepTimes(a,I,p,s).k, p+*Times(a,I);
set ST = StepTimes(a,I,p,s);
A4: I is_halting_on Initialized ST.k, p+*Times(a,I) by A2,A3,SCMFSA8B:42;
set SW = StepWhile>0(a, I ";" SubFrom(a, intloc 0),p,Initialized s);
Macro SubFrom(a, intloc 0)
is_halting_on IExec(I,p+*Times(a,I),ST.k), p+*Times(a,I)
by SCMFSA7B:19;
then
A5: I ";" SubFrom(a, intloc 0)
is_halting_on Initialized ST.k, p+*Times(a,I) by A4,SFMASTR1:3;
hereby
per cases;
suppose
SW.k.a <= 0;
then DataPart SW.(k+1) = DataPart ST.k by Th31;
hence StepTimes(a,I,p,s).(k+1).intloc 0 = 1 by A2,SCMFSA_M:2;
end;
suppose
SW.k.a > 0;
then
DataPart SW.(k+1) =
DataPart IExec(I ";" SubFrom(a, intloc 0),p+*Times(a,I), ST.k)
by A2,A5,Th32;
hence
ST.(k+1).intloc 0
= IExec(I ";" SubFrom(a, intloc 0),p+*Times(a,I),ST.k).intloc 0
by SCMFSA_M:2
.= Exec(SubFrom(a, intloc 0), IExec(I,p+*
(Times(a,I) qua good Program of SCM+FSA),ST.k)).intloc 0
by A4,SFMASTR1:11
.= IExec(I,p+*Times(a,I), ST.k).intloc 0 by SCMFSA_2:65
.= 1 by A4,SCMFSA8C:67;
end;
end;
assume ST.k.a > 0;
then DataPart SW.(k+1)
= DataPart IExec(I ";" SubFrom(a, intloc 0),p+*Times(a,I),ST.k)
by A2,A5,Th32;
hence ST.(k+1).a
= IExec(I ";" SubFrom(a, intloc 0),p+*Times(a,I), ST.k).a by SCMFSA_M:2
.= Exec(SubFrom(a, intloc 0), IExec(I,p+*Times(a,I), ST.k)).a
by A4,SFMASTR1:11
.= IExec(I,p+*Times(a,I),ST.k).a - IExec(I,p+*Times(a,I),ST.k).intloc 0
by SCMFSA_2:65
.= IExec(I,p+*Times(a,I), ST.k).a - 1 by A4,SCMFSA8C:67
.= (Initialized ST.k).a - 1 by A4,A1 ,SCMFSA8C:95
.= ST.k.a - 1 by SCMFSA_M:37;
end;
theorem
StepTimes(a,I,p,s).0.f = s.f
proof
set ST = StepTimes(a,I,p,s);
set Is = Initialized s;
thus ST.0.f = Is.f by SCMFSA_9:def 5
.= s.f by SCMFSA_M:37;
end;
definition let p;
let s be State of SCM+FSA, a be read-write Int-Location,
I be MacroInstruction of SCM+FSA;
pred ProperTimesBody a, I, s, p means
for k being Nat st k < s.a
holds I is_halting_on StepTimes(a,I,p,s).k, p+*Times(a,I);
end;
theorem Th50:
I is parahalting implies ProperTimesBody a,I,s,p by SCMFSA7B:19;
theorem Th51:
for J being good really-closed MacroInstruction of SCM+FSA holds
J does not destroy a &
ProperTimesBody a,J,s,p implies for k st k <= s.a holds
StepTimes(a,J,p,s).k.intloc 0 = 1
proof let J be good really-closed MacroInstruction of SCM+FSA;
set I = J;
set ST = StepTimes(a,I,p,s);
set Is = Initialized s;
defpred X[Nat] means $1 <= s.a implies ST.$1.intloc 0 = 1;
assume
A1: J does not destroy a;
assume
A2: ProperTimesBody a,I,s,p;
A3: for k being Nat st X[k] holds X[k+1]
proof
let k be Nat;
assume that
A4: k <= s.a implies ST.k.intloc 0 = 1 and
A5: k+1 <= s.a;
reconsider sa = s.a as Element of NAT by A5,INT_1:3;
A6: k < sa by A5,NAT_1:13;
then I is_halting_on ST.k,p+*Times(a,I) by A2;
hence thesis by A4,A6,Th48,A1;
end;
A7: X[0]
proof
assume 0 <= s.a;
thus ST.0.intloc 0 = Is.intloc 0 by SCMFSA_9:def 5
.= 1 by SCMFSA_M:9;
end;
thus for k holds X[k] from NAT_1:sch 2(A7, A3);
end;
theorem Th52:
for J being good really-closed MacroInstruction of SCM+FSA holds
J does not destroy a & ProperTimesBody a,J,s,p
implies for k st k <= s.a holds StepTimes(a,J,p,s).k.a+k = s.a
proof let J be good really-closed MacroInstruction of SCM+FSA;
set I = J;
assume that
A1: J does not destroy a and
A2: ProperTimesBody a,I,s,p;
set Is = Initialized s;
set ST = StepTimes(a,I,p,s);
set SW = StepWhile>0(a, I ";" SubFrom(a, intloc 0),p,Is);
defpred X[Nat] means $1 <= s.a implies StepTimes(a,I,p,s).$1.a+
$1 = s.a;
A3: for k being Nat st X[k] holds X[k+1]
proof
let k be Nat such that
A4: k <= s.a implies ST.k.a+k = s.a and
A5: k+1 <= s.a;
reconsider sa = s.a as Element of NAT by A5,INT_1:3;
A6: k < sa by A5,NAT_1:13;
then
A7: ST.k.intloc 0 = 1 by A1,A2,Th51;
A8: now
assume SW.k.a <= 0;
then SW.k.a+k < s.a+0 by A6,XREAL_1:8;
hence contradiction by A4,A6;
end;
I is_halting_on ST.k,p+*Times(a,I) by A2,A6;
then
A9: I is_halting_on Initialized ST.k,p+*Times(a,I) by A7,SCMFSA8B:42;
Macro SubFrom(a, intloc 0)
is_halting_on IExec(I,p+*Times(a,I),ST.k),p+*Times(a,I) by SCMFSA7B:19;
then
I ";" SubFrom(a, intloc 0) is_halting_on Initialized ST.k,p+*Times(a,I)
by A9,SFMASTR1:3;
then
DataPart SW.(k+1)
= DataPart IExec(I ";" SubFrom(a,intloc 0),p+*Times(a,I),ST.k)
by A7,A8,Th32;
then ST.(k+1).a = IExec(I ";" SubFrom(a,intloc 0),p+*Times(a,I),ST.k).a
by SCMFSA_M:2
.= Exec(SubFrom(a, intloc 0),
IExec(I,p+*Times(a,I),ST.k)).a by A9,SFMASTR1:11
.= IExec(I,p+*Times(a,I),ST.k).a -
IExec(I,p+*Times(a,I),ST.k).intloc 0
by SCMFSA_2:65
.= IExec(I,p+*Times(a,I),ST.k).a - 1 by A9,SCMFSA8C:67
.= (Initialized ST.k).a - 1 by A9,A1,SCMFSA8C:95
.= ST.k.a - 1 by SCMFSA_M:37;
hence thesis by A4,A6;
end;
A10: X[0]
proof
assume 0 <= s.a;
thus ST.0.a+0 = Is.a by SCMFSA_9:def 5
.= s.a by SCMFSA_M:37;
end;
thus for k holds X[k] from NAT_1:sch 2(A10, A3);
end;
theorem Th53:
for J being good really-closed MacroInstruction of SCM+FSA holds
J does not destroy a &
ProperTimesBody a,J,s,p & 0 <= s.a
implies
for k st k >= s.a
holds StepTimes(a,J,p,s).k.a = 0 & StepTimes(a,J,p,s).k.intloc 0 = 1
proof let J be good really-closed MacroInstruction of SCM+FSA;
set I = J;
assume that
A1: J does not destroy a and
A2: ProperTimesBody a,I,s,p and
A3: 0 <= s.a;
set ST = StepTimes(a,I,p,s);
set SW = StepWhile>0 (a, I ";" SubFrom(a, intloc 0), p, Initialized s);
defpred X[Nat] means $1 >= s.a implies ST.$1.a = 0 & ST.$1.intloc 0 = 1;
A4: for k st X[k] holds X[k+1]
proof
reconsider sa = s.a as Element of NAT by A3,INT_1:3;
let k such that
A5: k >= s.a implies ST.k.a = 0 & ST.k.intloc 0 = 1 and
A6: k+1 >= s.a;
per cases by A6,XXREAL_0:1;
suppose
A7: k+1 = sa;
then ST.(k+1).a+(k+1) = s.a by A2,Th52,A1;
hence ST.(k+1).a = 0 by A7;
thus thesis by A2,A7,Th51,A1;
end;
suppose
A8: k+1 > sa;
then
A9: DataPart SW.(k+1) = DataPart SW.k by A5,NAT_1:13,Th31;
hence ST.(k+1).a = 0 by A5,A8,NAT_1:13,SCMFSA_M:2;
thus thesis by A5,A8,A9,NAT_1:13,SCMFSA_M:2;
end;
end;
A10: X[0]
proof
assume
A11: 0 >= s.a;
thus ST.0.a = ST.0.a+0
.= 0 by A2,A3,A11,Th52,A1;
thus thesis by A2,A3,Th51,A1;
end;
thus for k holds X[k] from NAT_1:sch 2(A10, A4);
end;
theorem
for J being good really-closed MacroInstruction of SCM+FSA holds
J does not destroy a &
s.a = k & (ProperTimesBody a,J,s,p or J is parahalting)
implies
DataPart IExec(Times(a,J),p,s) = DataPart StepTimes(a,J,p,s).k
proof let J be good really-closed MacroInstruction of SCM+FSA;
set I = J;
assume
A1: J does not destroy a;
assume
A2: s.a = k;
set ST = StepTimes(a,I,p,s);
reconsider ISu = I ";" SubFrom(a, intloc 0)
as really-closed MacroInstruction of SCM+FSA;
:: !!!
set s1 = Initialized s;
set Is1 = Initialized s1;
set SW = StepWhile>0(a, ISu, p, s1);
set ISW = StepWhile>0(a, ISu, p, Is1);
set WH = while>0 ( a, ISu );
assume
A3: ProperTimesBody a,I,s,p or I is parahalting;
then
A4: ProperTimesBody a,I,s,p by Th50;
A5: ProperBodyWhile>0 a, ISu, s1, p
proof
let k be Nat;
assume SW.k.a > 0;
then
A6: k < s.a by A2,A4,Th53,A1;
then
A7: ST.k.intloc 0 = 1 by A3,Th50,Th51,A1;
then
A8: DataPart ST.k = DataPart Initialized (ST.k) by SCMFSA_M:19;
I is_halting_on ST.k,p+*Times(a,I) by A4,A6;
then
A9: I is_halting_on Initialized ST.k,p+*Times(a,I) by A7,SCMFSA8B:42;
Macro SubFrom(a, intloc 0)
is_halting_on IExec(I,p+*Times(a,I),ST.k),p+*Times(a,I) by SCMFSA7B:19;
then ISu is_halting_on
Initialized ST.k,p+*Times(a,I) by A9,SFMASTR1:3;
hence thesis by A8,SCMFSA8B:5;
end;
A10: WithVariantWhile>0 a, ISu, Is1, p
proof
reconsider sa = s.a as Element of NAT by A2,ORDINAL1:def 12;
deffunc U(State of SCM+FSA) = |.$1.a.|;
consider f being Function of product the_Values_of SCM+FSA,NAT such
that
A11: for x being Element of product the_Values_of SCM+FSA holds f
.x = U(x) from FUNCT_2:sch 4;
A12: for x being State of SCM+FSA holds f.x = U(x)
proof let x be State of SCM+FSA;
reconsider x as Element of product the_Values_of SCM+FSA
by CARD_3:107;
f.x = U(x) by A11;
hence thesis;
end;
take f;
let k be Nat;
per cases;
suppose
A13: k < s.a;
then
A14: k-k < s.a-k by XREAL_1:9;
A15: ST.k.a+k = s.a by A4,A13,Th52,A1;
A16: k+1 <= sa by A13,NAT_1:13;
then
A17: (k+1)-(k+1) <= s.a-(k+1) by XREAL_1:9;
A18: ST.(k+1).a+(k+1) = s.a by A4,A16,Th52,A1;
then
A19: s.a = (ST.(k+1).a+1)+k;
A20: f.(ISW.(k+1)) = |. ISW.(k+1).a .| by A12
.= SW.(k+1).a by A18,A17,ABSVALUE:def 1;
f.(ISW.k) = |. ISW.k.a .| by A12
.= SW.k.a by A15,A14,ABSVALUE:def 1;
hence thesis by A15,A19,A20,NAT_1:13;
end;
suppose
k >= s.a;
hence thesis by A2,A4,Th53,A1;
end;
end;
A21: ProperBodyWhile>0 a, ISu, Is1, p by A5;
then consider K being Nat such that
A22: ExitsAtWhile>0(a, ISu, p, Is1) = K and
A23: ISW.K.a <= 0 and
A24: for i being Nat st ISW.i.a <= 0 holds K <= i and
DataPart Comput(p+*WH,(Initialize Is1),(
LifeSpan(p+*WH,Initialize Is1)
)) = DataPart ISW.K by A10,Def6;
A25: DataPart IExec(WH,p,s1)
= DataPart ISW.ExitsAtWhile>0(a, ISu, p, Is1) by A21,A10,Th36;
SW.k.a = 0 by A2,A4,Th53,A1;
then ISW.k.a = 0;
then
A26: K <= k by A24;
then
A27: SW.K.a+K = k by A2,A4,Th52,A1;
K-K <= k-K by A26,XREAL_1:9;
then
A28: ISW.K.a = 0 by A23,A27;
A29: ISW.K.a+K = k by A27;
A30: now
let x be Int-Location;
thus IExec(Times(a,I),p,s).x
= IExec(WH,p,s1).x by SCMFSA8C:3
.= ST.k.x by A25,A22,A29,A28,SCMFSA_M:2;
end;
now
let x be FinSeq-Location;
thus IExec(Times(a,I),p,s).x
= IExec(WH,p,s1).x by SCMFSA8C:3
.= ST.k.x by A25,A22,A29,A28,SCMFSA_M:2;
end;
hence thesis by A30,SCMFSA_M:2;
end;
theorem Th55:
for J being good really-closed MacroInstruction of SCM+FSA holds
J does not destroy a &
s.intloc 0 = 1 & (ProperTimesBody a,J,s,p or J is parahalting)
implies Times(a, J) is_halting_on s,p
proof let J be good really-closed MacroInstruction of SCM+FSA;
set I = J;
assume
A1: J does not destroy a;
assume
A2: s.intloc 0 = 1;
set taI = Times(a, I);
set ST = StepTimes(a,I,p,s);
set ISu = I ";" SubFrom(a, intloc 0);
set WH = while>0 ( a, ISu );
set s1 = Initialized s;
set Is1 = Initialized s1;
set SW = StepWhile>0(a, ISu, p, s1);
set ISW = StepWhile>0(a, ISu, p, Is1);
assume
A3: ProperTimesBody a,I,s,p or I is parahalting;
then
A4: ProperTimesBody a,I,s,p by Th50;
per cases;
suppose
A5: s.a < 0;
A6: s1.a = s.a by SCMFSA_M:37;
WH is_halting_on s1,p by A5,A6,SCMFSA_9:38;
then taI is_halting_on Initialized s,p;
hence thesis by A2,SCMFSA8B:42;
end;
suppose
A7: 0 <= s.a;
A8: ProperBodyWhile>0 a, ISu, s1, p
proof
let k be Nat;
assume SW.k.a > 0;
then
A9: k < s.a by A4,A7,Th53,A1;
then
A10: ST.k.intloc 0 = 1 by A3,Th50,Th51,A1;
then
A11: DataPart ST.k = DataPart Initialized (ST.k) by SCMFSA_M:19;
I is_halting_on ST.k,p+*Times(a,I) by A4,A9;
then
A12: I is_halting_on Initialized ST.k,p+*Times(a,I) by A10,SCMFSA8B:42;
Macro SubFrom(a, intloc 0) is_halting_on
IExec(I,p+*Times(a,I),ST.k),p+*Times(a,I)
by SCMFSA7B:19;
then ISu is_halting_on Initialized ST.k,p+*Times(a,I) by A12,SFMASTR1:3;
hence thesis by A11,SCMFSA8B:5;
end;
A13: WithVariantWhile>0 a, ISu, Is1, p
proof
reconsider sa = s.a as Element of NAT by A7,INT_1:3;
deffunc U(State of SCM+FSA) = |.$1.a.|;
consider f being Function of product the_Values_of SCM+FSA,NAT such
that
A14: for x being Element of product the_Values_of SCM+FSA holds
f.x = U(x) from FUNCT_2:sch 4;
A15: for x being State of SCM+FSA holds f.x = U(x)
proof let x be State of SCM+FSA;
reconsider x as Element of product the_Values_of SCM+FSA
by CARD_3:107;
f.x = U(x) by A14;
hence thesis;
end;
take f;
let k be Nat;
per cases;
suppose
A16: k < s.a;
then
A17: k-k < s.a-k by XREAL_1:9;
A18: ST.k.a+k = s.a by A4,A16,Th52,A1;
A19: k+1 <= sa by A16,NAT_1:13;
then
A20: (k+1)-(k+1) <= s.a-(k+1) by XREAL_1:9;
A21: ST.(k+1).a+(k+1) = s.a by A4,A19,Th52,A1;
then
A22: s.a = (ST.(k+1).a+1)+k;
A23: f.(ISW.(k+1)) = |. ISW.(k+1).a .| by A15
.= SW.(k+1).a by A21,A20,ABSVALUE:def 1;
f.(ISW.k) = |. ISW.k.a .| by A15
.= SW.k.a by A18,A17,ABSVALUE:def 1;
hence thesis by A18,A22,A23,NAT_1:13;
end;
suppose
k >= s.a;
hence thesis by A4,A7,Th53,A1;
end;
end;
A24: ProperBodyWhile>0 a, ISu, Is1, p by A8;
WH is_halting_on Is1,p by A24,A13,Th27;
then WH is_halting_on s1,p;
then taI is_halting_on Initialized s,p;
hence thesis by A2,SCMFSA8B:42;
end;
end;
:: from SCMFSA8C, 2013.04.13, A.T.
reserve P for Instruction-Sequence of SCM+FSA;
theorem Th56:
for s being State of SCM+FSA,
I being good parahalting really-closed MacroInstruction of SCM+FSA,
a being read-write Int-Location
st I does not destroy a & s.intloc 0 = 1
holds Times(a,I) is_halting_on s,P by Th55;
theorem
for I being good parahalting really-closed MacroInstruction of SCM+FSA,
a being read-write Int-Location st I does not destroy a
holds Initialize((intloc 0).-->1) is Times(a,I)-halted
proof
let I be good parahalting really-closed MacroInstruction of SCM+FSA;
let a be read-write Int-Location;
assume
A1: I does not destroy a;
now
let s be State of SCM+FSA;
let P be Instruction-Sequence of SCM+FSA;
(Initialized s).intloc 0 = 1 by SCMFSA_M:5;
hence Times(a,I) is_halting_on Initialized s,P by A1,Th56;
end;
hence thesis by SCMFSA8C:5;
end;
theorem
for s being State of SCM+FSA, I being MacroInstruction of SCM+FSA,
a being read-write Int-Location st s.intloc 0 = 1 & s.a <= 0 holds
DataPart IExec(Times(a,I),P,s) = DataPart s by Th35;