:: by Shunichi Kobayashi

::

:: Received October 19, 1999

:: Copyright (c) 1999-2021 Association of Mizar Users

theorem Th1: :: BVFUNC14:1

for Y being non empty set

for z being Element of Y

for PA, PB being a_partition of Y holds EqClass (z,(PA '/\' PB)) = (EqClass (z,PA)) /\ (EqClass (z,PB))

for z being Element of Y

for PA, PB being a_partition of Y holds EqClass (z,(PA '/\' PB)) = (EqClass (z,PA)) /\ (EqClass (z,PB))

proof end;

theorem :: BVFUNC14:2

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B being a_partition of Y st G = {A,B} & A <> B holds

'/\' G = A '/\' B

for G being Subset of (PARTITIONS Y)

for A, B being a_partition of Y st G = {A,B} & A <> B holds

'/\' G = A '/\' B

proof end;

Lm1: for f being Function

for C, D, c, d being object st C <> D holds

((f +* (C .--> c)) +* (D .--> d)) . C = c

proof end;

Lm2: for B, C, D, b, c, d being object

for h being Function st h = (B,C,D) --> (b,c,d) holds

rng h = {(h . B),(h . C),(h . D)}

proof end;

theorem :: BVFUNC14:3

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for B, C, D being a_partition of Y st G = {B,C,D} & B <> C & C <> D & D <> B holds

'/\' G = (B '/\' C) '/\' D

for G being Subset of (PARTITIONS Y)

for B, C, D being a_partition of Y st G = {B,C,D} & B <> C & C <> D & D <> B holds

'/\' G = (B '/\' C) '/\' D

proof end;

theorem Th4: :: BVFUNC14:4

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C being a_partition of Y st G = {A,B,C} & A <> B & C <> A holds

CompF (A,G) = B '/\' C

for G being Subset of (PARTITIONS Y)

for A, B, C being a_partition of Y st G = {A,B,C} & A <> B & C <> A holds

CompF (A,G) = B '/\' C

proof end;

theorem Th5: :: BVFUNC14:5

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C being a_partition of Y st G = {A,B,C} & A <> B & B <> C holds

CompF (B,G) = C '/\' A

for G being Subset of (PARTITIONS Y)

for A, B, C being a_partition of Y st G = {A,B,C} & A <> B & B <> C holds

CompF (B,G) = C '/\' A

proof end;

theorem :: BVFUNC14:6

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C being a_partition of Y st G = {A,B,C} & B <> C & C <> A holds

CompF (C,G) = A '/\' B

for G being Subset of (PARTITIONS Y)

for A, B, C being a_partition of Y st G = {A,B,C} & B <> C & C <> A holds

CompF (C,G) = A '/\' B

proof end;

theorem Th7: :: BVFUNC14:7

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D being a_partition of Y st G = {A,B,C,D} & A <> B & A <> C & A <> D holds

CompF (A,G) = (B '/\' C) '/\' D

for G being Subset of (PARTITIONS Y)

for A, B, C, D being a_partition of Y st G = {A,B,C,D} & A <> B & A <> C & A <> D holds

CompF (A,G) = (B '/\' C) '/\' D

proof end;

theorem Th8: :: BVFUNC14:8

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D being a_partition of Y st G = {A,B,C,D} & A <> B & B <> C & B <> D holds

CompF (B,G) = (A '/\' C) '/\' D

for G being Subset of (PARTITIONS Y)

for A, B, C, D being a_partition of Y st G = {A,B,C,D} & A <> B & B <> C & B <> D holds

CompF (B,G) = (A '/\' C) '/\' D

proof end;

theorem :: BVFUNC14:9

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D being a_partition of Y st G = {A,B,C,D} & A <> C & B <> C & C <> D holds

CompF (C,G) = (A '/\' B) '/\' D

for G being Subset of (PARTITIONS Y)

for A, B, C, D being a_partition of Y st G = {A,B,C,D} & A <> C & B <> C & C <> D holds

CompF (C,G) = (A '/\' B) '/\' D

proof end;

theorem :: BVFUNC14:10

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D being a_partition of Y st G = {A,B,C,D} & A <> D & B <> D & C <> D holds

CompF (D,G) = (A '/\' C) '/\' B

for G being Subset of (PARTITIONS Y)

for A, B, C, D being a_partition of Y st G = {A,B,C,D} & A <> D & B <> D & C <> D holds

CompF (D,G) = (A '/\' C) '/\' B

proof end;

theorem :: BVFUNC14:11

theorem :: BVFUNC14:12

theorem :: BVFUNC14:13

theorem :: BVFUNC14:14

:: from BVFUNC20

theorem Th15: :: BVFUNC14:15

for Y being non empty set

for A, B, C, D being a_partition of Y

for h being Function

for A9, B9, C9, D9 being object st A <> B & A <> C & A <> D & B <> C & B <> D & C <> D & h = (((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (A .--> A9) holds

( h . B = B9 & h . C = C9 & h . D = D9 )

for A, B, C, D being a_partition of Y

for h being Function

for A9, B9, C9, D9 being object st A <> B & A <> C & A <> D & B <> C & B <> D & C <> D & h = (((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (A .--> A9) holds

( h . B = B9 & h . C = C9 & h . D = D9 )

proof end;

theorem Th16: :: BVFUNC14:16

for A, B, C, D being object

for h being Function

for A9, B9, C9, D9 being object st h = (((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (A .--> A9) holds

dom h = {A,B,C,D}

for h being Function

for A9, B9, C9, D9 being object st h = (((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (A .--> A9) holds

dom h = {A,B,C,D}

proof end;

theorem Th17: :: BVFUNC14:17

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D being a_partition of Y

for h being Function

for A9, B9, C9, D9 being object st G = {A,B,C,D} & h = (((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (A .--> A9) holds

rng h = {(h . A),(h . B),(h . C),(h . D)}

for G being Subset of (PARTITIONS Y)

for A, B, C, D being a_partition of Y

for h being Function

for A9, B9, C9, D9 being object st G = {A,B,C,D} & h = (((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (A .--> A9) holds

rng h = {(h . A),(h . B),(h . C),(h . D)}

proof end;

theorem :: BVFUNC14:18

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D being a_partition of Y

for z, u being Element of Y

for h being Function st G is independent & G = {A,B,C,D} & A <> B & A <> C & A <> D & B <> C & B <> D & C <> D holds

EqClass (u,((B '/\' C) '/\' D)) meets EqClass (z,A)

for G being Subset of (PARTITIONS Y)

for A, B, C, D being a_partition of Y

for z, u being Element of Y

for h being Function st G is independent & G = {A,B,C,D} & A <> B & A <> C & A <> D & B <> C & B <> D & C <> D holds

EqClass (u,((B '/\' C) '/\' D)) meets EqClass (z,A)

proof end;

theorem :: BVFUNC14:19

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D being a_partition of Y

for z, u being Element of Y st G is independent & G = {A,B,C,D} & A <> B & A <> C & A <> D & B <> C & B <> D & C <> D & EqClass (z,(C '/\' D)) = EqClass (u,(C '/\' D)) holds

EqClass (u,(CompF (A,G))) meets EqClass (z,(CompF (B,G)))

for G being Subset of (PARTITIONS Y)

for A, B, C, D being a_partition of Y

for z, u being Element of Y st G is independent & G = {A,B,C,D} & A <> B & A <> C & A <> D & B <> C & B <> D & C <> D & EqClass (z,(C '/\' D)) = EqClass (u,(C '/\' D)) holds

EqClass (u,(CompF (A,G))) meets EqClass (z,(CompF (B,G)))

proof end;

theorem :: BVFUNC14:20

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C being a_partition of Y

for z, u being Element of Y st G is independent & G = {A,B,C} & A <> B & B <> C & C <> A & EqClass (z,C) = EqClass (u,C) holds

EqClass (u,(CompF (A,G))) meets EqClass (z,(CompF (B,G)))

for G being Subset of (PARTITIONS Y)

for A, B, C being a_partition of Y

for z, u being Element of Y st G is independent & G = {A,B,C} & A <> B & B <> C & C <> A & EqClass (z,C) = EqClass (u,C) holds

EqClass (u,(CompF (A,G))) meets EqClass (z,(CompF (B,G)))

proof end;

theorem Th21: :: BVFUNC14:21

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E being a_partition of Y st G = {A,B,C,D,E} & A <> B & A <> C & A <> D & A <> E holds

CompF (A,G) = ((B '/\' C) '/\' D) '/\' E

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E being a_partition of Y st G = {A,B,C,D,E} & A <> B & A <> C & A <> D & A <> E holds

CompF (A,G) = ((B '/\' C) '/\' D) '/\' E

proof end;

theorem Th22: :: BVFUNC14:22

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E being a_partition of Y st G = {A,B,C,D,E} & A <> B & B <> C & B <> D & B <> E holds

CompF (B,G) = ((A '/\' C) '/\' D) '/\' E

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E being a_partition of Y st G = {A,B,C,D,E} & A <> B & B <> C & B <> D & B <> E holds

CompF (B,G) = ((A '/\' C) '/\' D) '/\' E

proof end;

theorem Th23: :: BVFUNC14:23

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E being a_partition of Y st G = {A,B,C,D,E} & A <> C & B <> C & C <> D & C <> E holds

CompF (C,G) = ((A '/\' B) '/\' D) '/\' E

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E being a_partition of Y st G = {A,B,C,D,E} & A <> C & B <> C & C <> D & C <> E holds

CompF (C,G) = ((A '/\' B) '/\' D) '/\' E

proof end;

theorem Th24: :: BVFUNC14:24

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E being a_partition of Y st G = {A,B,C,D,E} & A <> D & B <> D & C <> D & D <> E holds

CompF (D,G) = ((A '/\' B) '/\' C) '/\' E

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E being a_partition of Y st G = {A,B,C,D,E} & A <> D & B <> D & C <> D & D <> E holds

CompF (D,G) = ((A '/\' B) '/\' C) '/\' E

proof end;

theorem :: BVFUNC14:25

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E being a_partition of Y st G = {A,B,C,D,E} & A <> E & B <> E & C <> E & D <> E holds

CompF (E,G) = ((A '/\' B) '/\' C) '/\' D

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E being a_partition of Y st G = {A,B,C,D,E} & A <> E & B <> E & C <> E & D <> E holds

CompF (E,G) = ((A '/\' B) '/\' C) '/\' D

proof end;

theorem Th26: :: BVFUNC14:26

for A, B, C, D, E being set

for h being Function

for A9, B9, C9, D9, E9 being set st A <> B & A <> C & A <> D & A <> E & B <> C & B <> D & B <> E & C <> D & C <> E & D <> E & h = ((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (A .--> A9) holds

( h . A = A9 & h . B = B9 & h . C = C9 & h . D = D9 & h . E = E9 )

for h being Function

for A9, B9, C9, D9, E9 being set st A <> B & A <> C & A <> D & A <> E & B <> C & B <> D & B <> E & C <> D & C <> E & D <> E & h = ((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (A .--> A9) holds

( h . A = A9 & h . B = B9 & h . C = C9 & h . D = D9 & h . E = E9 )

proof end;

theorem Th27: :: BVFUNC14:27

for A, B, C, D, E being set

for h being Function

for A9, B9, C9, D9, E9 being set st h = ((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (A .--> A9) holds

dom h = {A,B,C,D,E}

for h being Function

for A9, B9, C9, D9, E9 being set st h = ((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (A .--> A9) holds

dom h = {A,B,C,D,E}

proof end;

theorem Th28: :: BVFUNC14:28

for A, B, C, D, E being set

for h being Function

for A9, B9, C9, D9, E9 being set st h = ((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (A .--> A9) holds

rng h = {(h . A),(h . B),(h . C),(h . D),(h . E)}

for h being Function

for A9, B9, C9, D9, E9 being set st h = ((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (A .--> A9) holds

rng h = {(h . A),(h . B),(h . C),(h . D),(h . E)}

proof end;

theorem :: BVFUNC14:29

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E being a_partition of Y

for z, u being Element of Y

for h being Function st G is independent & G = {A,B,C,D,E} & A <> B & A <> C & A <> D & A <> E & B <> C & B <> D & B <> E & C <> D & C <> E & D <> E holds

EqClass (u,(((B '/\' C) '/\' D) '/\' E)) meets EqClass (z,A)

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E being a_partition of Y

for z, u being Element of Y

for h being Function st G is independent & G = {A,B,C,D,E} & A <> B & A <> C & A <> D & A <> E & B <> C & B <> D & B <> E & C <> D & C <> E & D <> E holds

EqClass (u,(((B '/\' C) '/\' D) '/\' E)) meets EqClass (z,A)

proof end;

theorem :: BVFUNC14:30

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E being a_partition of Y

for z, u being Element of Y st G is independent & G = {A,B,C,D,E} & A <> B & A <> C & A <> D & A <> E & B <> C & B <> D & B <> E & C <> D & C <> E & D <> E & EqClass (z,((C '/\' D) '/\' E)) = EqClass (u,((C '/\' D) '/\' E)) holds

EqClass (u,(CompF (A,G))) meets EqClass (z,(CompF (B,G)))

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E being a_partition of Y

for z, u being Element of Y st G is independent & G = {A,B,C,D,E} & A <> B & A <> C & A <> D & A <> E & B <> C & B <> D & B <> E & C <> D & C <> E & D <> E & EqClass (z,((C '/\' D) '/\' E)) = EqClass (u,((C '/\' D) '/\' E)) holds

EqClass (u,(CompF (A,G))) meets EqClass (z,(CompF (B,G)))

proof end;

:: moved from BVFUNC23, AG 4.01.2006

theorem Th31: :: BVFUNC14:31

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F being a_partition of Y st G = {A,B,C,D,E,F} & A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F holds

CompF (A,G) = (((B '/\' C) '/\' D) '/\' E) '/\' F

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F being a_partition of Y st G = {A,B,C,D,E,F} & A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F holds

CompF (A,G) = (((B '/\' C) '/\' D) '/\' E) '/\' F

proof end;

theorem Th32: :: BVFUNC14:32

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F being a_partition of Y st G = {A,B,C,D,E,F} & A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F holds

CompF (B,G) = (((A '/\' C) '/\' D) '/\' E) '/\' F

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F being a_partition of Y st G = {A,B,C,D,E,F} & A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F holds

CompF (B,G) = (((A '/\' C) '/\' D) '/\' E) '/\' F

proof end;

theorem Th33: :: BVFUNC14:33

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F being a_partition of Y st G = {A,B,C,D,E,F} & A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F holds

CompF (C,G) = (((A '/\' B) '/\' D) '/\' E) '/\' F

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F being a_partition of Y st G = {A,B,C,D,E,F} & A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F holds

CompF (C,G) = (((A '/\' B) '/\' D) '/\' E) '/\' F

proof end;

theorem Th34: :: BVFUNC14:34

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F being a_partition of Y st G = {A,B,C,D,E,F} & A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F holds

CompF (D,G) = (((A '/\' B) '/\' C) '/\' E) '/\' F

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F being a_partition of Y st G = {A,B,C,D,E,F} & A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F holds

CompF (D,G) = (((A '/\' B) '/\' C) '/\' E) '/\' F

proof end;

theorem Th35: :: BVFUNC14:35

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F being a_partition of Y st G = {A,B,C,D,E,F} & A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F holds

CompF (E,G) = (((A '/\' B) '/\' C) '/\' D) '/\' F

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F being a_partition of Y st G = {A,B,C,D,E,F} & A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F holds

CompF (E,G) = (((A '/\' B) '/\' C) '/\' D) '/\' F

proof end;

theorem :: BVFUNC14:36

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F being a_partition of Y st G = {A,B,C,D,E,F} & A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F holds

CompF (F,G) = (((A '/\' B) '/\' C) '/\' D) '/\' E

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F being a_partition of Y st G = {A,B,C,D,E,F} & A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F holds

CompF (F,G) = (((A '/\' B) '/\' C) '/\' D) '/\' E

proof end;

theorem Th37: :: BVFUNC14:37

for A, B, C, D, E, F being set

for h being Function

for A9, B9, C9, D9, E9, F9 being set st A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F & h = (((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (A .--> A9) holds

( h . A = A9 & h . B = B9 & h . C = C9 & h . D = D9 & h . E = E9 & h . F = F9 )

for h being Function

for A9, B9, C9, D9, E9, F9 being set st A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F & h = (((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (A .--> A9) holds

( h . A = A9 & h . B = B9 & h . C = C9 & h . D = D9 & h . E = E9 & h . F = F9 )

proof end;

theorem Th38: :: BVFUNC14:38

for A, B, C, D, E, F being set

for h being Function

for A9, B9, C9, D9, E9, F9 being set st h = (((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (A .--> A9) holds

dom h = {A,B,C,D,E,F}

for h being Function

for A9, B9, C9, D9, E9, F9 being set st h = (((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (A .--> A9) holds

dom h = {A,B,C,D,E,F}

proof end;

theorem Th39: :: BVFUNC14:39

for A, B, C, D, E, F being set

for h being Function

for A9, B9, C9, D9, E9, F9 being set st h = (((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (A .--> A9) holds

rng h = {(h . A),(h . B),(h . C),(h . D),(h . E),(h . F)}

for h being Function

for A9, B9, C9, D9, E9, F9 being set st h = (((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (A .--> A9) holds

rng h = {(h . A),(h . B),(h . C),(h . D),(h . E),(h . F)}

proof end;

theorem :: BVFUNC14:40

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F being a_partition of Y

for z, u being Element of Y

for h being Function st G is independent & G = {A,B,C,D,E,F} & A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F holds

EqClass (u,((((B '/\' C) '/\' D) '/\' E) '/\' F)) meets EqClass (z,A)

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F being a_partition of Y

for z, u being Element of Y

for h being Function st G is independent & G = {A,B,C,D,E,F} & A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F holds

EqClass (u,((((B '/\' C) '/\' D) '/\' E) '/\' F)) meets EqClass (z,A)

proof end;

theorem :: BVFUNC14:41

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F being a_partition of Y

for z, u being Element of Y

for h being Function st G is independent & G = {A,B,C,D,E,F} & A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F & EqClass (z,(((C '/\' D) '/\' E) '/\' F)) = EqClass (u,(((C '/\' D) '/\' E) '/\' F)) holds

EqClass (u,(CompF (A,G))) meets EqClass (z,(CompF (B,G)))

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F being a_partition of Y

for z, u being Element of Y

for h being Function st G is independent & G = {A,B,C,D,E,F} & A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F & EqClass (z,(((C '/\' D) '/\' E) '/\' F)) = EqClass (u,(((C '/\' D) '/\' E) '/\' F)) holds

EqClass (u,(CompF (A,G))) meets EqClass (z,(CompF (B,G)))

proof end;

theorem Th42: :: BVFUNC14:42

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J being a_partition of Y st G = {A,B,C,D,E,F,J} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J holds

CompF (A,G) = ((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J being a_partition of Y st G = {A,B,C,D,E,F,J} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J holds

CompF (A,G) = ((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J

proof end;

theorem Th43: :: BVFUNC14:43

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J being a_partition of Y st G = {A,B,C,D,E,F,J} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J holds

CompF (B,G) = ((((A '/\' C) '/\' D) '/\' E) '/\' F) '/\' J

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J being a_partition of Y st G = {A,B,C,D,E,F,J} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J holds

CompF (B,G) = ((((A '/\' C) '/\' D) '/\' E) '/\' F) '/\' J

proof end;

theorem Th44: :: BVFUNC14:44

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J being a_partition of Y st G = {A,B,C,D,E,F,J} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J holds

CompF (C,G) = ((((A '/\' B) '/\' D) '/\' E) '/\' F) '/\' J

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J being a_partition of Y st G = {A,B,C,D,E,F,J} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J holds

CompF (C,G) = ((((A '/\' B) '/\' D) '/\' E) '/\' F) '/\' J

proof end;

theorem Th45: :: BVFUNC14:45

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J being a_partition of Y st G = {A,B,C,D,E,F,J} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J holds

CompF (D,G) = ((((A '/\' B) '/\' C) '/\' E) '/\' F) '/\' J

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J being a_partition of Y st G = {A,B,C,D,E,F,J} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J holds

CompF (D,G) = ((((A '/\' B) '/\' C) '/\' E) '/\' F) '/\' J

proof end;

theorem Th46: :: BVFUNC14:46

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J being a_partition of Y st G = {A,B,C,D,E,F,J} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J holds

CompF (E,G) = ((((A '/\' B) '/\' C) '/\' D) '/\' F) '/\' J

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J being a_partition of Y st G = {A,B,C,D,E,F,J} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J holds

CompF (E,G) = ((((A '/\' B) '/\' C) '/\' D) '/\' F) '/\' J

proof end;

theorem Th47: :: BVFUNC14:47

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J being a_partition of Y st G = {A,B,C,D,E,F,J} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J holds

CompF (F,G) = ((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' J

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J being a_partition of Y st G = {A,B,C,D,E,F,J} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J holds

CompF (F,G) = ((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' J

proof end;

theorem :: BVFUNC14:48

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J being a_partition of Y st G = {A,B,C,D,E,F,J} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J holds

CompF (J,G) = ((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' F

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J being a_partition of Y st G = {A,B,C,D,E,F,J} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J holds

CompF (J,G) = ((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' F

proof end;

theorem Th49: :: BVFUNC14:49

for A, B, C, D, E, F, J being set

for h being Function

for A9, B9, C9, D9, E9, F9, J9 being set st A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J & h = ((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (A .--> A9) holds

( h . A = A9 & h . B = B9 & h . C = C9 & h . D = D9 & h . E = E9 & h . F = F9 & h . J = J9 )

for h being Function

for A9, B9, C9, D9, E9, F9, J9 being set st A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J & h = ((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (A .--> A9) holds

( h . A = A9 & h . B = B9 & h . C = C9 & h . D = D9 & h . E = E9 & h . F = F9 & h . J = J9 )

proof end;

theorem Th50: :: BVFUNC14:50

for A, B, C, D, E, F, J being set

for h being Function

for A9, B9, C9, D9, E9, F9, J9 being set st h = ((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (A .--> A9) holds

dom h = {A,B,C,D,E,F,J}

for h being Function

for A9, B9, C9, D9, E9, F9, J9 being set st h = ((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (A .--> A9) holds

dom h = {A,B,C,D,E,F,J}

proof end;

theorem Th51: :: BVFUNC14:51

for A, B, C, D, E, F, J being set

for h being Function

for A9, B9, C9, D9, E9, F9, J9 being set st h = ((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (A .--> A9) holds

rng h = {(h . A),(h . B),(h . C),(h . D),(h . E),(h . F),(h . J)}

for h being Function

for A9, B9, C9, D9, E9, F9, J9 being set st h = ((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (A .--> A9) holds

rng h = {(h . A),(h . B),(h . C),(h . D),(h . E),(h . F),(h . J)}

proof end;

theorem :: BVFUNC14:52

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J being a_partition of Y

for z, u being Element of Y st G is independent & G = {A,B,C,D,E,F,J} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J holds

EqClass (u,(((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J)) meets EqClass (z,A)

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J being a_partition of Y

for z, u being Element of Y st G is independent & G = {A,B,C,D,E,F,J} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J holds

EqClass (u,(((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J)) meets EqClass (z,A)

proof end;

theorem :: BVFUNC14:53

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J being a_partition of Y

for z, u being Element of Y st G is independent & G = {A,B,C,D,E,F,J} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J & EqClass (z,((((C '/\' D) '/\' E) '/\' F) '/\' J)) = EqClass (u,((((C '/\' D) '/\' E) '/\' F) '/\' J)) holds

EqClass (u,(CompF (A,G))) meets EqClass (z,(CompF (B,G)))

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J being a_partition of Y

for z, u being Element of Y st G is independent & G = {A,B,C,D,E,F,J} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J & EqClass (z,((((C '/\' D) '/\' E) '/\' F) '/\' J)) = EqClass (u,((((C '/\' D) '/\' E) '/\' F) '/\' J)) holds

EqClass (u,(CompF (A,G))) meets EqClass (z,(CompF (B,G)))

proof end;

theorem Th54: :: BVFUNC14:54

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M being a_partition of Y st G = {A,B,C,D,E,F,J,M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M holds

CompF (A,G) = (((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M being a_partition of Y st G = {A,B,C,D,E,F,J,M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M holds

CompF (A,G) = (((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M

proof end;

theorem Th55: :: BVFUNC14:55

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M being a_partition of Y st G = {A,B,C,D,E,F,J,M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M holds

CompF (B,G) = (((((A '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M being a_partition of Y st G = {A,B,C,D,E,F,J,M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M holds

CompF (B,G) = (((((A '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M

proof end;

theorem Th56: :: BVFUNC14:56

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M being a_partition of Y st G = {A,B,C,D,E,F,J,M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M holds

CompF (C,G) = (((((A '/\' B) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M being a_partition of Y st G = {A,B,C,D,E,F,J,M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M holds

CompF (C,G) = (((((A '/\' B) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M

proof end;

theorem Th57: :: BVFUNC14:57

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M being a_partition of Y st G = {A,B,C,D,E,F,J,M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M holds

CompF (D,G) = (((((A '/\' B) '/\' C) '/\' E) '/\' F) '/\' J) '/\' M

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M being a_partition of Y st G = {A,B,C,D,E,F,J,M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M holds

CompF (D,G) = (((((A '/\' B) '/\' C) '/\' E) '/\' F) '/\' J) '/\' M

proof end;

theorem Th58: :: BVFUNC14:58

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M being a_partition of Y st G = {A,B,C,D,E,F,J,M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M holds

CompF (E,G) = (((((A '/\' B) '/\' C) '/\' D) '/\' F) '/\' J) '/\' M

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M being a_partition of Y st G = {A,B,C,D,E,F,J,M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M holds

CompF (E,G) = (((((A '/\' B) '/\' C) '/\' D) '/\' F) '/\' J) '/\' M

proof end;

theorem Th59: :: BVFUNC14:59

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M being a_partition of Y st G = {A,B,C,D,E,F,J,M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M holds

CompF (F,G) = (((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' J) '/\' M

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M being a_partition of Y st G = {A,B,C,D,E,F,J,M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M holds

CompF (F,G) = (((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' J) '/\' M

proof end;

theorem Th60: :: BVFUNC14:60

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M being a_partition of Y st G = {A,B,C,D,E,F,J,M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M holds

CompF (J,G) = (((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' F) '/\' M

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M being a_partition of Y st G = {A,B,C,D,E,F,J,M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M holds

CompF (J,G) = (((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' F) '/\' M

proof end;

theorem :: BVFUNC14:61

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M being a_partition of Y st G = {A,B,C,D,E,F,J,M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M holds

CompF (M,G) = (((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' F) '/\' J

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M being a_partition of Y st G = {A,B,C,D,E,F,J,M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M holds

CompF (M,G) = (((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' F) '/\' J

proof end;

theorem Th62: :: BVFUNC14:62

for A, B, C, D, E, F, J, M being set

for h being Function

for A9, B9, C9, D9, E9, F9, J9, M9 being set st A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M & h = (((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (A .--> A9) holds

( h . B = B9 & h . C = C9 & h . D = D9 & h . E = E9 & h . F = F9 & h . J = J9 )

for h being Function

for A9, B9, C9, D9, E9, F9, J9, M9 being set st A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M & h = (((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (A .--> A9) holds

( h . B = B9 & h . C = C9 & h . D = D9 & h . E = E9 & h . F = F9 & h . J = J9 )

proof end;

theorem Th63: :: BVFUNC14:63

for A, B, C, D, E, F, J, M being set

for h being Function

for A9, B9, C9, D9, E9, F9, J9, M9 being set st h = (((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (A .--> A9) holds

dom h = {A,B,C,D,E,F,J,M}

for h being Function

for A9, B9, C9, D9, E9, F9, J9, M9 being set st h = (((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (A .--> A9) holds

dom h = {A,B,C,D,E,F,J,M}

proof end;

theorem Th64: :: BVFUNC14:64

for A, B, C, D, E, F, J, M being set

for h being Function

for A9, B9, C9, D9, E9, F9, J9, M9 being set st h = (((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (A .--> A9) holds

rng h = {(h . A),(h . B),(h . C),(h . D),(h . E),(h . F),(h . J),(h . M)}

for h being Function

for A9, B9, C9, D9, E9, F9, J9, M9 being set st h = (((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (A .--> A9) holds

rng h = {(h . A),(h . B),(h . C),(h . D),(h . E),(h . F),(h . J),(h . M)}

proof end;

theorem :: BVFUNC14:65

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M being a_partition of Y

for z, u being Element of Y st G is independent & G = {A,B,C,D,E,F,J,M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M holds

(EqClass (u,((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M))) /\ (EqClass (z,A)) <> {}

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M being a_partition of Y

for z, u being Element of Y st G is independent & G = {A,B,C,D,E,F,J,M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M holds

(EqClass (u,((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M))) /\ (EqClass (z,A)) <> {}

proof end;

theorem :: BVFUNC14:66

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M being a_partition of Y

for z, u being Element of Y st G is independent & G = {A,B,C,D,E,F,J,M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M & EqClass (z,(((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M)) = EqClass (u,(((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M)) holds

EqClass (u,(CompF (A,G))) meets EqClass (z,(CompF (B,G)))

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M being a_partition of Y

for z, u being Element of Y st G is independent & G = {A,B,C,D,E,F,J,M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M & EqClass (z,(((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M)) = EqClass (u,(((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M)) holds

EqClass (u,(CompF (A,G))) meets EqClass (z,(CompF (B,G)))

proof end;

Lm3: for x1, x2, x3, x4, x5, x6, x7, x8, x9 being set holds {x1,x2,x3,x4,x5,x6,x7,x8,x9} = {x1,x2,x3,x4} \/ {x5,x6,x7,x8,x9}

proof end;

theorem Th67: :: BVFUNC14:67

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M, N being a_partition of Y st G = {A,B,C,D,E,F,J,M,N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds

CompF (A,G) = ((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M, N being a_partition of Y st G = {A,B,C,D,E,F,J,M,N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds

CompF (A,G) = ((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N

proof end;

theorem Th68: :: BVFUNC14:68

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M, N being a_partition of Y st G = {A,B,C,D,E,F,J,M,N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds

CompF (B,G) = ((((((A '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M, N being a_partition of Y st G = {A,B,C,D,E,F,J,M,N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds

CompF (B,G) = ((((((A '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N

proof end;

theorem Th69: :: BVFUNC14:69

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M, N being a_partition of Y st G = {A,B,C,D,E,F,J,M,N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds

CompF (C,G) = ((((((A '/\' B) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M, N being a_partition of Y st G = {A,B,C,D,E,F,J,M,N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds

CompF (C,G) = ((((((A '/\' B) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N

proof end;

theorem Th70: :: BVFUNC14:70

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M, N being a_partition of Y st G = {A,B,C,D,E,F,J,M,N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds

CompF (D,G) = ((((((A '/\' B) '/\' C) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M, N being a_partition of Y st G = {A,B,C,D,E,F,J,M,N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds

CompF (D,G) = ((((((A '/\' B) '/\' C) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N

proof end;

theorem Th71: :: BVFUNC14:71

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M, N being a_partition of Y st G = {A,B,C,D,E,F,J,M,N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds

CompF (E,G) = ((((((A '/\' B) '/\' C) '/\' D) '/\' F) '/\' J) '/\' M) '/\' N

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M, N being a_partition of Y st G = {A,B,C,D,E,F,J,M,N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds

CompF (E,G) = ((((((A '/\' B) '/\' C) '/\' D) '/\' F) '/\' J) '/\' M) '/\' N

proof end;

theorem Th72: :: BVFUNC14:72

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M, N being a_partition of Y st G = {A,B,C,D,E,F,J,M,N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds

CompF (F,G) = ((((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' J) '/\' M) '/\' N

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M, N being a_partition of Y st G = {A,B,C,D,E,F,J,M,N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds

CompF (F,G) = ((((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' J) '/\' M) '/\' N

proof end;

theorem Th73: :: BVFUNC14:73

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M, N being a_partition of Y st G = {A,B,C,D,E,F,J,M,N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds

CompF (J,G) = ((((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' F) '/\' M) '/\' N

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M, N being a_partition of Y st G = {A,B,C,D,E,F,J,M,N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds

CompF (J,G) = ((((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' F) '/\' M) '/\' N

proof end;

theorem Th74: :: BVFUNC14:74

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M, N being a_partition of Y st G = {A,B,C,D,E,F,J,M,N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds

CompF (M,G) = ((((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' N

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M, N being a_partition of Y st G = {A,B,C,D,E,F,J,M,N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds

CompF (M,G) = ((((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' N

proof end;

theorem :: BVFUNC14:75

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M, N being a_partition of Y st G = {A,B,C,D,E,F,J,M,N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds

CompF (N,G) = ((((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M, N being a_partition of Y st G = {A,B,C,D,E,F,J,M,N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds

CompF (N,G) = ((((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M

proof end;

theorem Th76: :: BVFUNC14:76

for A, B, C, D, E, F, J, M, N being set

for h being Function

for A9, B9, C9, D9, E9, F9, J9, M9, N9 being set st A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N & h = ((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (N .--> N9)) +* (A .--> A9) holds

( h . A = A9 & h . B = B9 & h . C = C9 & h . D = D9 & h . E = E9 & h . F = F9 & h . J = J9 & h . M = M9 & h . N = N9 )

for h being Function

for A9, B9, C9, D9, E9, F9, J9, M9, N9 being set st A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N & h = ((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (N .--> N9)) +* (A .--> A9) holds

( h . A = A9 & h . B = B9 & h . C = C9 & h . D = D9 & h . E = E9 & h . F = F9 & h . J = J9 & h . M = M9 & h . N = N9 )

proof end;

theorem Th77: :: BVFUNC14:77

for A, B, C, D, E, F, J, M, N being set

for h being Function

for A9, B9, C9, D9, E9, F9, J9, M9, N9 being set st h = ((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (N .--> N9)) +* (A .--> A9) holds

dom h = {A,B,C,D,E,F,J,M,N}

for h being Function

for A9, B9, C9, D9, E9, F9, J9, M9, N9 being set st h = ((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (N .--> N9)) +* (A .--> A9) holds

dom h = {A,B,C,D,E,F,J,M,N}

proof end;

theorem Th78: :: BVFUNC14:78

for A, B, C, D, E, F, J, M, N being set

for h being Function

for A9, B9, C9, D9, E9, F9, J9, M9, N9 being set st h = ((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (N .--> N9)) +* (A .--> A9) holds

rng h = {(h . A),(h . B),(h . C),(h . D),(h . E),(h . F),(h . J),(h . M),(h . N)}

for h being Function

for A9, B9, C9, D9, E9, F9, J9, M9, N9 being set st h = ((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (N .--> N9)) +* (A .--> A9) holds

rng h = {(h . A),(h . B),(h . C),(h . D),(h . E),(h . F),(h . J),(h . M),(h . N)}

proof end;

theorem :: BVFUNC14:79

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M, N being a_partition of Y

for z, u being Element of Y st G is independent & G = {A,B,C,D,E,F,J,M,N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds

(EqClass (u,(((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N))) /\ (EqClass (z,A)) <> {}

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M, N being a_partition of Y

for z, u being Element of Y st G is independent & G = {A,B,C,D,E,F,J,M,N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds

(EqClass (u,(((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N))) /\ (EqClass (z,A)) <> {}

proof end;

theorem :: BVFUNC14:80

for Y being non empty set

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M, N being a_partition of Y

for z, u being Element of Y st G is independent & G = {A,B,C,D,E,F,J,M,N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N & EqClass (z,((((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N)) = EqClass (u,((((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N)) holds

EqClass (u,(CompF (A,G))) meets EqClass (z,(CompF (B,G)))

for G being Subset of (PARTITIONS Y)

for A, B, C, D, E, F, J, M, N being a_partition of Y

for z, u being Element of Y st G is independent & G = {A,B,C,D,E,F,J,M,N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N & EqClass (z,((((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N)) = EqClass (u,((((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N)) holds

EqClass (u,(CompF (A,G))) meets EqClass (z,(CompF (B,G)))

proof end;